2nd Workshop "Machine Learning for Quantum Technology" - TUTORIALS

	TUESDAY, NOV. 5		
10:30 - 11:30	Registration + coffee		
11:30 - 13:00	Eliška Greplová - TUTORIAL 1: Condensed Matter Physics with Machine Learning		
13:00 - 14:30	Lunch break		
14:30 - 16:00	Marín Bukov - TUTORIAL 2: Reinforcement Learning for Quantum Technologies		
16:00 - 16:30	Coffee break		
16:30 - 18:00	Roger Melko - TUTORIAL 3: Autoregressive models in Quantum Physics		

2nd Workshop "Machine Learning for Quantum Technology" - SCHEDULE

	WEDNESDAY, NOV. 6	THURSDAY, NOV. 7	FRIDAY, NOV. 8
9:00 - 9:30	Registration + opening remarks	Registration	Registration
9:30 - 10:05	Eliška Greplová Autonomous Quantum Control in the age of Al	Monika Aidelsburger Quantum many-body systems under the microscope	Vedran Dunjko Provable exponential quantum advantages in learning from classical data
10:05 - 10:40	Anton Frisk Kockum Quantum state and process tomography with machine learning and gradient descent	Simon Trebst Decoding many-body teleportation	Hans Briegel Towards explainable AI in quantum science
10:40 - 10:55	Martin Gärttner Machine learning assisted quantum simulator readout	Yue Ban Neural-network-assisted parameter estimation for quantum detection	Chenfeng Cao Unveiling quantum phase transitions from traps in variational quantum algorithms
10:55 - 11:20			
11:20 - 11:55	Christopher Eichler Realizing a reinforcement learning agent for real-time quantum feedback	Giuseppe Carleo Neural quantum states for many-body electronic structure and dynamics	Johannes Bausch Machine Learning for Fault-Tolerant Quantum Computation
11:55 - 12:30	Annabelle Bohrdt Trying to solve quantum many-body problems with neural networks	Markus Schmitt (Neural) network representations of many-body wave functions	Evert van Nieuwenburg RL and RL for quantum systems
12:30 - 12:45	Maximilian Prüfer Physics-inspired machine learning models and optimal control for quantum experiments	Dario Poletti Paths towards time evolution with larger neural-network quantum states	Matias Bilkis Automatic re-calibration of quantum devices by RL
12:45 - 13:00	Petr Zapletal Error-tolerant quantum convolutional neural networks for symmetry-protected topological phases	Gorka Muñoz-Gil Representation learning reaches the lab: let machines act!	Clara Wanjura Quantum Equilibrium Propagation for efficient training of quantum systems based on Onsager reciprocity
13:00 - 14:30	Lunch break		
14:30 - 15:05	Marín Bukov Reinforcement learning transmon-qubit entangling gates	Roger Melko Language Models for Quantum Simulation	Jonas Schuff Autonomous tuning of spin qubits
15:05 - 15:40	Volodymyr Sivak Calibration of decoders for quantum error correction using multi-agent reinforcement learning	Markus Heyl Solving 2D quantum matter with neural quantum states	Christof Weitenberg Machine learning and ultracold quantum gases
15:40 - 15:55	Maciej Koch-Janusz Analyzing and constructing efficient data encoding quantum circuits	Cristian Bonato Learning the dynamics of Markovian open quantum systems from experimental data	Closing remarks
15:55 - 16:20	Coffe		
16:20 - 16:35	Bijita Sarma Fast Hardware-efficient Quantum Gate Design using Optimal Control with Reinforcement Learning Ansatz	Akash Kundu Program synthesis-driven quantum architecture search for optimal quantum circuit design in variational quantum algorithms	LEGEND
16:35 - 17:10	Mats Granath Graph neural network based decoders for quantum error correcting codes	Mario Krenn Towards an Artificial Muse for new ideas in Science	Invited talk (30′+5′ Q&A)
17:10 - 18:00	Poster flash talks (1' each) + poster setup	Poster flash talks (1' each) + poster setup	
From 18:00	Poster session A (including dinner)	Poster session B (including dinner)	Contributed talk (12'+3' Q&A)