Preparing Schrödinger cat states using a neural network

Presenter:

Pavlo Bilous, Max Planck Institute for the Science of Light (Erlangen, Germany)

Collaboration:

H. Hutin [1], P. Bilous [2], C. Ye [1], S. Abdollahi [1], L. Cros [1], T. Dvir [3], T. Shah [2], Y. Cohen [3], A. Bienfait [1], F. Marquardt [2, 4], and B. Huard [1]

[1] Ecole Normale Supèrieure de Lyon (France)

- [2] Max Planck Institute for the Science of Light (Erlangen, Germany)
- [3] Quantum Machines Inc. (Tel Aviv, Israel)
- [4] Friedrich-Alexander-Universität Erlangen-Nürnberg (Germany)

Purpose of this work:

Development and experimental demonstration of a fast neural-networkbased method for preparation of families of quantum states

Main idea:

- consider not a single state but the whole continuous family (here Schrödinger cat states)
- teach neural network to control the system on a selection of states
- use the neural network to quickly generate control for ANY state

First proposal of the idea: F. Sauvage and F. Mintert, PRL 129 (2022)

Physical system (qubit + cavity)

Control task and pulse representation

Jaynes-Cummings Model in the dispersive regime:

$H(t) = H^{ m drift} + H^{ m ctrl}_{ m qub}(t) + H^{ m ctrl}_{ m cav}(t)$	(1)
where:	
$H^{ m drift} = -\chi n_{ m phot} \sigma_z$	(2)
$H_{ ext{qub}}^{ ext{ctrl}}(t) = \mu_{ ext{qub}} arepsilon_{ ext{qub}}(t) \sigma_+ + ext{h.c.}$	(3)
$H^{ ext{ctrl}}_{ ext{cav}}(t) = \mu_{ ext{cav}} arepsilon_{ ext{cav}}(t) a^{\dagger} + ext{h.c.}$	(4)
$\chi = 238.5 \text{ MHz}, T_1^{\text{qub}} = 35 \text{ us}, T_2^{\text{qub}} = 42 \text{ us}, T_1^{\text{cav}} = 225 \text{ us}$	

=> The system is driven during a fixed time-interval => We target the family of Schrödinger cat states: $|\alpha\rangle + e^{-i\varphi}|-\alpha\rangle$ with $\alpha < 4$ **?** For all states at once, find the optimal control, that is the 4 fields $\operatorname{Re} \varepsilon_{qub}$, $\operatorname{Im} \varepsilon_{qub}$, $\operatorname{Re} \varepsilon_{cav}$, $\operatorname{Im} \varepsilon_{cav}$

We search for the control pulses in the B-spline basis often applied in computational atomic physics

> W. R. Johnson, Atomic Structure Theory; Lectures on Atomic Physics, Springer, New York (2007)

H. Hutin, P. Bilous et al. arXiv:2409.05557

MAX-PLANCK-INSTITUT FÜR DIE PHYSIK DES LICHTS