
In this work, we use generative denoising diffusion models (DMs) to produce desired quantum operations within gate-based 
quantum circuits, based on some input text defining the goal operation. DMs allow to sidestep during training the exponential 
overhead inherent in the classical simulation of quantum dynamics, a consistent bottleneck in preceding ML techniques. We 
demonstrate the model's capabilities across two tasks: entanglement generation and unitary compilation. The model excels at 
generating new circuits and supports typical DM extensions such as masking and editing to, for instance, align the circuit 
generation to the constraints of the targeted quantum device. Given their flexibility and generalization abilities, we envision 

DMs as pivotal in quantum circuit synthesis, enhancing both practical applications but also insights into theoretical quantum 
computation.
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Entanglement generation

Goal: generate circuits that create 
quantum states with entanglement, 
given by their Schmidt Rank Vector 
(SRV).

Result: genQC produces accurate, new 
and distinct circuits! Accuracy 
decreases with entanglement, due to 
circuit complexity.

Scalability: creating a training set 
for big circuits is prohibitively 
expensive.
Instead, we train with easy examples 
(low qubit number) and fine-tune the 
model with few hard ones (i.e., large 
qubit number).
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Unitary compilation

Goal: generate circuits that compile 
a unitary U with given gate set 
(discrete gates here).

Result: genQC generates multiple 
valid circuit that exactly  compile 
the given unitary. Wrong circuits are  
close and can be used as ansätze.

Transpilation: as gate set is an input, we can generate same 
unitaries with different gates and explore.
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Masking Editing
Input tensor can be masked to prevent the model placing gates 
to, e.g. account for QPU connectivity:

Similarly, we can prefix some gates and edit the rest to, 
e.g. consider input states and perform operations on them:
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Dataset: pairs of circuit + property used as conditioning (i.e. unitary). 

Loss: compares added white noise to the predicted one. No need of quantum 
computation here, hence no exponential bottleneck! 

I want a circuit that ...
... compiles this unitary
... prepares this entangled state

Training Goal 
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Flexible model able to produce circuits on 

demand for varied number of qubits and 
circuit lengths.
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loss = MAE(true, predicted) 
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Inference: new circuits can be generated from purely 
noisy tensors. The input tensor defines circuit size 
and further constraints (see Masking / Editing).
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Outlooks
- Other platforms: photons, qudits, MBQC,... Same model, just different tensor encodings!

- Scaling: bigger models for bigger circuits, trained on multiple tasks at the same time.

- Interpretability: attention mechanism gives a tool to understand the model's decisions. 

- Better conditioning: either learnt (embeddings) or physically inspired (Hamiltonians).

code paper


