
As loss function, we use the binary cross entropy with a weighted L1-Norm, forcing the model to focus on the correct prediction of 

classical input states. Here       nis the model’s prediction and                                            nis the correct label:  

 

 

 

 

Fig. 1: Higher N  yields more confident predictions. But: For low N, the accuracy is still high (>80%) indicating that the samples are 

correlated. 

Fig. 2:  is not a reliable tool to drive the model’s bias towards classical states. Note that vacuum is the only Fock state that is non-

classical, hence difficult to learn for the model. However, this problem might be lifted when training on snapshots resulting from a non-

trivial unitary.  

HOW NON-CLASSICAL IS A QUANTUM STATE? 
Martina Jung, Martin Gärttner 

Non-classicality, defined in the sense of quantum optics, is a 

resource: If a non-classical state is mixed with vacuum in a 

beamsplitter, the resulting state will be entangled. Hence, 

quantifying the non-classicality of a quantum state is crucial to 

gauge its potential for quantum advantage in an experiment, for 

instance in a Boson Sampler. However, academic non-classicali-

ty measures fail as a practical tool for experimentalists.  

Here, we implement a data-based, devise-specific approach 

which quantifies the non-classicality of a state by the ability of a 

neural network to distinguish the state from a classical one. In 

this approach, snapshots from photon-number measurements 

are input to a permutation invariant Vision-Transformer [1]. 

In the past, it was shown that a simple model can be trained to 

identify a single mode state’s non-classicality based on its 

photon-number statistics [2]. 

MOTIVATION 

Classical states are defined as those with a non-negative P-

representation 

 

 

 

 

Example: Coherent state 

CLASSICAL STATES 

The training data consists of photon-number measurements 

taken after a quantum optical circuit. Input states are classical 

(coherent and thermal) as well as non-classical (Fock, cat, 

squeezed, and photon-added thermal) states. For each input, M  
snapshots are taken. 

Here, we choose U  to be the identity. This might sound trivial at 

first, but in fact, passive linear transformations, like beam-

splitter and phase shifters, correspond to free operations that 

do not alter the non-classicality of a quantum state. 

Key to the parameter-efficient architecture is a preprocessing of 

the data: The M snapshots are split into sets of N snapshots. 

The model will then be trained to learn correlations within these 

sets χi . 

ARCHITECTURE 

OUTLOOK 

Make it realistic: 

The model is able to correctly learn the labels of product states. The next step is to implement a non-trivial unitary that will generate 

quantum correlations within the output state. It would be interesting to see whether this facilitates or challenges the correct 

classification of non-classical states. Further, the model can be trained on lossy data. 

 

Make it experimental: 

An experimental device can be interpreted as a black-box that inherently includes some loss. Even if the input state is noise-free, its non

-classicality will be altered by the device. Hence, the only non-classicality label we can confidently predict is the label of classical 

states. The procedure would then be to:  

1. Train the model on experimentally measured classical data (to learn the noise of the device) and non-classical simulated data 

2. Give the model snapshots of an unknown non-classical state 

3. Model’s deviation of average non-classical prediction learned in 1. then gives measure of how non-classical the input state is 

Fig 1.  

Encoder-Decoder 

architecture of the 

Transformer classifier. 

Here, we set NS =1, 

hence the Recursive 

and the Reduction 

Attention Block are 

omitted, and the Mini-

Set Self Attention Block 

(MSSAB) reduces to a 

single SAB.  

Taken from [1] and 

modified with AI-tools. 

Fig. 3  

True-Positive-Rate (TPR, correctly classified classical states) against False-Positive-Rate (FPR, wrongly 

classified non-classical states) for different choices of . N =50 for all points. 

The architecture is inspired by the state-of-the-

art permutation invariant Vision-Transformer 

developed by Kim et al. [1].  

The preprocessed input snapshots {χi}i are 

parallelly processed by Self-Attention Blocks 

(SAB) and then decoded in a Pooling Attention 

Block respecting the permutation invariance.  

After L SAB layers, correlations up to order 2 L 

are accessed.  

In this context, the number N of snapshots in 

each set serves as a measure of how much 

statistics is necessary for a correct classifica-

tion of the input state. 
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THE DATA 

RESULTS 

Fig. 2  

Average prediction for a classical state against the number N of snapshots in a set. =1 for all points. 


