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Classically optimize a quantum circuit to approximate the time 
evolution operator of a fermionic system for time 𝜟𝒕

• Treat the problem classically for short Δ𝑡; execute on quantum 

hardware for Δ𝑡 ≫ 1
• Use Riemannian optimization to incorporate the unitary constraint 

of the quantum gates

• Start with fermionic swap network that implements a Trotter step

• Approximate the reference as a higher-order Trotterization and 

express it as a matrix product operator (MPO) 

• Evaluate cost function and gradient using tensor network methods

Quantum circuit layout and initialization

We consider fermionic Hamiltonians of the form

which covers systems like Fermi-Hubbard models or molecular 

Hamiltonians with diagonal interaction terms.

We initialize the model as a fermionic swap network [2], which 

implements a Trotter step using a simple brickwall circuit. Each 

orbital is represented by a qubit. By using fermionic SWAPs, all 

interacting orbitals are brought next to each other once and their time 

evolution is given by two-qubit gates parametrized by 𝑉𝑝𝑞 and 𝑇𝑝𝑞. 

We call the quantum gates {𝑉𝑖} and the quantum circuit 𝑊. 

Furthermore, we allow for additional layers following the brickwall 

circuit design.
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MPO representation of the reference

To avoid the exponential scaling of the exact time evolution operator 𝑈 in system size, it is useful to factorize it into smaller tensors and 

express it, e.g., as an MPO [3]:

An optional truncation of the bond dimension 𝝌 results in a lower-

rank approximation of the original MPO. In practice, we compute the 

reference 𝑈MPO as a high-accuracy approximation using 4th-order 

Trotterization and a suitable truncation (𝜀 = 1𝑒 − 14).

Cost function and gradient evaluation

The deviation of the quantum circuit 𝑊from the reference 𝑈MPO can be 

quantified by the normalized Frobenius norm

where 𝐶 is the norm of the reference and          is the 

variational part of the cost function.

By viewing the quantum circuit as a tensor network, the cost function 

is evaluated by tensor network contraction, and similarly, the partial 

derivative is obtained by “cutting out” the quantum gate:

Following the above, the Euclidean gradient is computed.

Riemannian optimization of unitary quantum gates [4]

The objective is to optimize the quantum gates under unitary 

constraints using Riemannian optimization. The set of two-qubit 

gates forms a Riemannian manifold 𝒰 with a tangent space 𝒯𝑉𝒰 and 

an inner product         associated to each point 𝑉 ∈ 𝒰. 

The Riemannian gradient corresponds to the projection of the 

Euclidean gradient onto the corresponding tangent space. Within 

Riemannian optimization, an update step is taken into the negative 

direction of the Riemannian gradient. The resulting point needs to be 

retracted from the tangent space into the manifold by, e.g., taking the 

unitary part of its polar decomposition.

Numerical results (preliminary)

The following shows the relative improvement from the initial 2nd 

order Trotterization after the optimization when using the same circuit 

layout (blue) and when allowing for an additional layer of two-qubit 

gates (red) for the Fermi-Hubbard model in 1D with 60 spin orbitals.

Preliminary results
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