

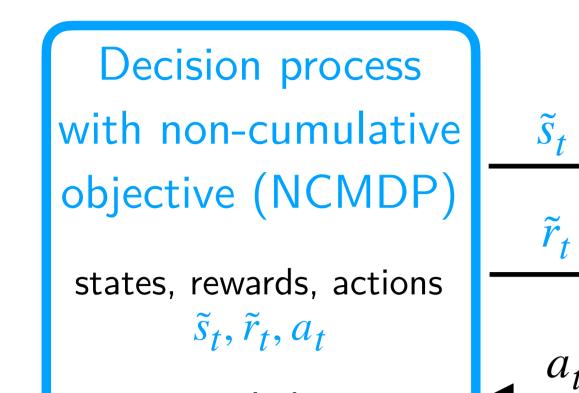
Tackling Decision Processes with Non-**Cumulative Objectives using Reinforcement Learning**

https://arxiv.org/abs/2405.13609

Maximilian Nägele^{1,2}, Jan Olle¹, Thomas Fösel², Remmy Zen¹, and Florian Marquardt^{1,2}

¹Max Planck Institute for the Science of Light, Erlangen, ²FAU, University of Erlangen-Nuernberg

General scheme

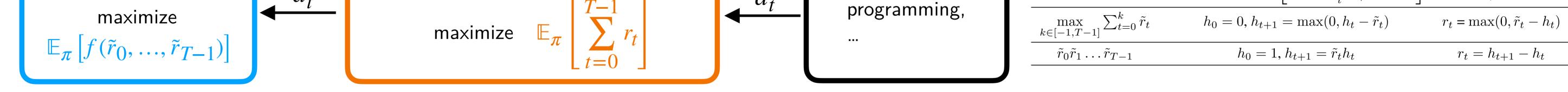


Markov decision process (MDP)
adapted rewards $r_t = f(\tilde{r}_0,, \tilde{r}_t) - f(\tilde{r}_0,, \tilde{r}_{t-1})$
adapted states $s_t = (\tilde{s}_t, h_t)$
$\begin{bmatrix} T & 1 \end{bmatrix}$

Markov decision process solver reinforcement learning, dynamic

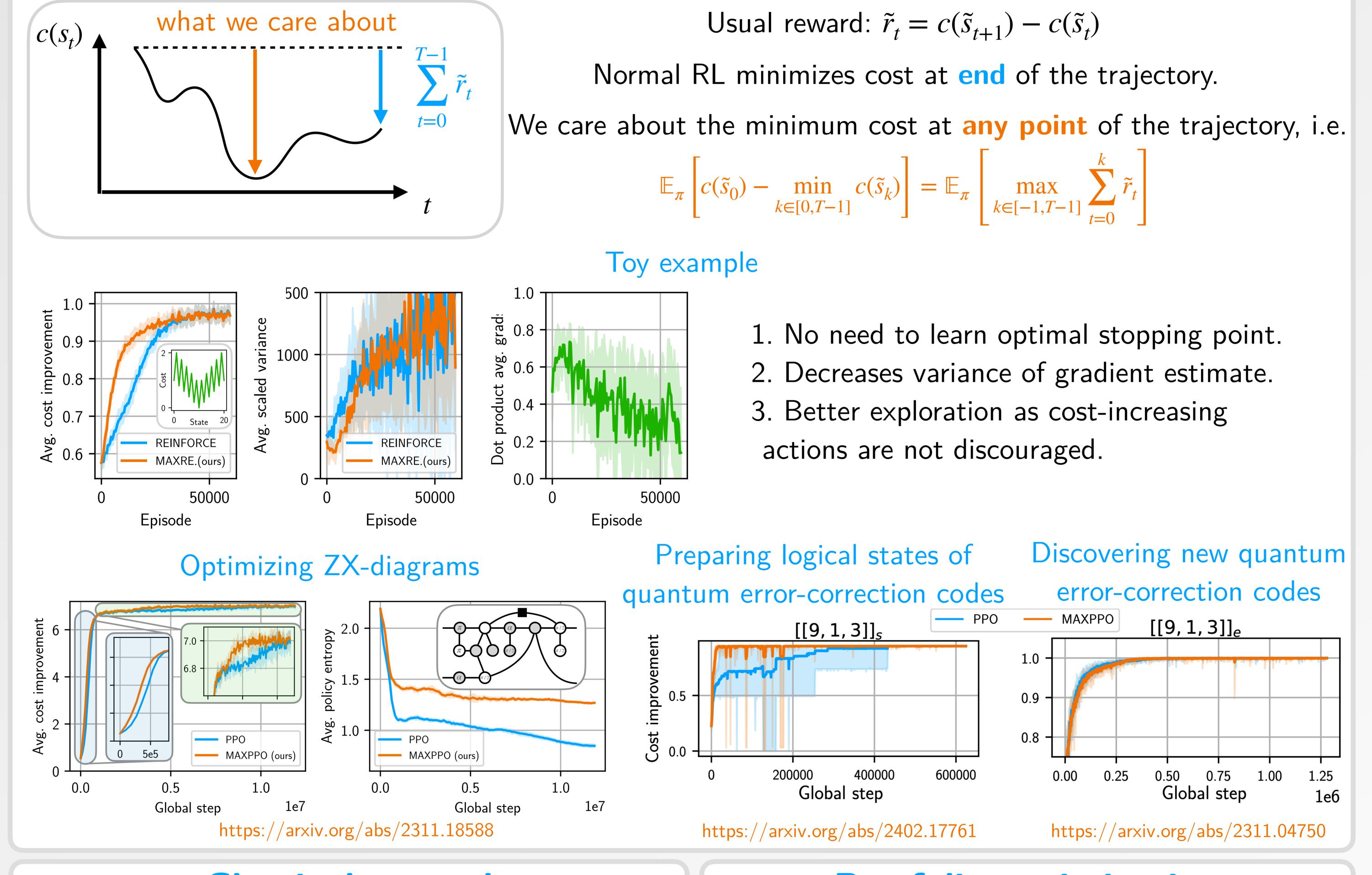
Table 1: Examples of non-cumulative objective functions f.

$f(ilde{r}_0,\ldots, ilde{r}_{T-1})$	State adaption h_t	Adapted reward r_t
$\max(\tilde{r}_0,\ldots,\tilde{r}_{T-1})$	$h_1 = \tilde{r}_0, h_{t+1} = \max(h_t, \tilde{r}_t)$	$r_t = \max(0, \tilde{r}_t - h_t)$
$\min(\tilde{r}_0,\ldots,\tilde{r}_{T-1})$	$h_1 = \tilde{r}_0, h_{t+1} = \min(h_t, \tilde{r}_t)$	$r_t = \min(0, \tilde{r}_t - h_t)$
$\frac{\text{Sharpe ratio}}{\frac{\text{MEAN}(\tilde{r}_0,,\tilde{r}_{T-1})}{\text{STD}(\tilde{r}_0,,\tilde{r}_{T-1})}}$	$h_{0} = \begin{bmatrix} 0\\0\\0 \end{bmatrix}, h_{t+1} = \begin{bmatrix} \frac{h_{t}^{(2)}}{h_{t}^{(2)}+1}h_{t}^{(0)} + \frac{1}{h_{t}^{(2)}+1}\tilde{r}_{t}\\ \frac{h_{t}^{(2)}}{h_{t}^{(2)}+1}h_{t}^{(1)} + \frac{1}{h_{t}^{(2)}+1}\tilde{r}_{t}^{2}\\ h_{t}^{(2)}+1 \end{bmatrix}$	$r_{t} = \frac{h_{t+1}^{(0)}}{\sqrt{h_{t+1}^{(1)} - h_{t+1}^{(0)^{2}}}} - \frac{h_{t}^{(0)}}{\sqrt{h_{t}^{(1)} - h_{t}^{(0)^{2}}}}$



An improved reward function for discrete optimization problems

Try to find the state with minimum cost $c(\tilde{s}_t)$ reachable from the start state.



$$\mathbb{E}_{\pi}\left[c(\tilde{s}_{0}) - \min_{k \in [0, T-1]} c(\tilde{s}_{k})\right] = \mathbb{E}_{\pi}\left[\max_{k \in [-1, T-1]} \sum_{t=0}^{k} \tilde{r}_{t}\right]$$

cumulative reward

Avg.

Classical control

Portfolio optimization

