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Table 1: Examples of non-cumulative objective functions f .

f(r̃0, . . . , r̃T�1) State adaption ht Adapted reward rt
max(r̃0, . . . , r̃T�1) h1 = r̃0, ht+1 = max(ht, r̃t) rt = max(0, r̃t � ht)

min(r̃0, . . . , r̃T�1) h1 = r̃0, ht+1 = min(ht, r̃t) rt = min(0, r̃t � ht)

Sharpe ratio
MEAN(r̃0,...,r̃T�1)

STD(r̃0,...,r̃T�1)
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probability distribution p(rt, st+1|st, at) with functions ⇢ and u, and vectors ht such that
rt = f(r̃0, . . . , r̃t)� f(r̃0, . . . , r̃t�1) = ⇢(ht, r̃t), (3)

st = (s̃t, ht) with ht+1 = u(ht, r̃t), (4)

p
�
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�
=
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p̃(r̃t, s̃t+1|s̃t, at)�ht+1,u(ht,r̃t)�rt,⇢(ht,r̃t), (5)

where � is the Kronecker delta. For continuous probability distributions, the sum should be replaced
by an integral and the � by Dirac delta functions.

We now provide some intuition for this definition: Equation (3) ensures that the return of M , i.e.PT�1

t=0
rt, is equal to the return of M̃ , i.e. f(r̃0, . . . , r̃T�1). To compute the immediate rewards rt of

M in a purely Markovian manner, we need access to information about the previous rewards of the
trajectory. This can be achieved by extending the state space with ht, which preserves all necessary
information about the reward history. The function u in Equation (4) updates this information at
each time step. Finally, the Kronecker deltas in Equation (5) ’pick’ all the possible r̃t that result in
the same ht+1 and rt. In principle, methods developed based on past (Bacchus et al., 1996; 1997)
or future (Thiébaux et al., 2006) linear temporal logic could be used to find ht. However, these
require an expensive computation over all possible states of the MDP making them inefficient for
online learning. There is always at least one MDP corresponding to a given NCMDP since we can
take ht = [r̃0, . . . , r̃t�1] with u(ht, r̃t) = [ht, r̃t] and ⇢(ht, r̃t) = f([ht, r̃t]) � f(ht). However,
this is undesirable because it leads to a state size that grows with the trajectory length. While we
do not provide a rule for constructing u and ⇢ for arbitrary f , we empirically observed that for all
fixed f we considered, a simple analytical consideration led to ht of small, constant size, which
is desirable for efficient learning and integration with standard function estimators such as neural
networks. We now provide some intuition on how to achieve this for new non-cumulative objectives:
First, find the additional quantities needed to calculate rt from r̃t. This is ht. Now we simply need to
iteratively update ht at each time step in a Markovian manner, using only the previous ht�1 and the
current reward. This update will be the function u. For example, for f(r̃0, . . . , r̃t) = min(r̃0, . . . , r̃t),
we can choose r0 = h1 = r̃0 followed by ht = u(ht, r̃t) = min(ht, r̃t), and rt = ⇢(ht, r̃t) =
min(0, r̃t � ht). More examples are shown in Table 1.

Due to Definition 1, there is a mapping between trajectories of NCMDPs and corresponding MDPs,
which we will exploit to use the same policy for both decision processes:
Definition 2. A trajectory T̃ = (s̃0, a0, r̃0, . . . ) of an NCMDP M̃ is mapped onto a trajectory
T = map

⇣
T̃
⌘

= (s0, a0, r0, . . . ) of a corresponding MDP M by calculating rt according to
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An improved reward function for discrete optimization problems

what we care aboutc(st)

t
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Try to find the state with minimum cost  reachable from the start state.c(s̃t)

𝔼π [c(s̃0) − min
k∈[0,T−1]

c(s̃k)] = 𝔼π [ max
k∈[−1,T−1]

k

∑
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Normal RL minimizes cost at end of the trajectory.
We care about the minimum cost at any point of the trajectory, i.e.

Usual reward: r̃t = c(s̃t+1) − c(s̃t)

(a) (b) (c)
Toy example

1. No need to learn optimal stopping point. 
2. Decreases variance of gradient estimate. 
3. Better exploration as cost-increasing        
actions are not discouraged.

Preparing logical states of 
quantum error-correction codes

Discovering new quantum 
error-correction codes(a) (b)
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Optimizing ZX-diagrams

Classical control
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Goal: Land with 
low speed increase

Portfolio optimization

𝔼π [ MEAN(pt)
STD(pt) ]
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Trade on 
S&P500 indices

Goal: Maximize SHARPE ratio

General scheme

Similar application: 
Robotics (DIFFSHARPE is cumulative approximation)
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