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Theory: Decoders and hypothesis testing

Canwe use single-parameter “noisiness” of a system to predict the accuracy of decoding?

Decoding an [[n,k]] Quantum Error-Correcting Code (QECC) as hypothesis testing:

E → A → Σ → Â (1)

1. An error E ∈ Pn occurs

2. E induces coset label A = (L, T ), combining logical error L and pure error T .
3. The pure error T gives a syndrome Σ
4. We predict Â for which logical error occured

Figure 1. Partition the Pauli group Pn into a “prism” [1] of L × S × T (dimensions 22k × 2n−k × 2n−k). Logical

operators are in L := N(S)/S , stabilizers are in S = 〈g1, . . . , gn−k〉, pure errors are in T := {t1, . . . , tn−k} with
{ti, gi} = 0.

A good decoder has small error probability perr(A|Σ) := PrpE
(A 6= Â). A Maximum Likelihood

Decoder (MLD) achieves a minimum error p∗
err.

Bounding decoder accuracywith entropy

The Shannon entropy of a variable X ∼ pX is

H(X) := −
∑

x

pX(x) log pX(x) := H(pX) (2)

For QECCs, the conditional entropy satisfies

H(A|Σ) = H(A) − H(Σ) (3)

This gives us upper [2] and lower [3] bounds for the MLD accuracy:

H(A|Σ) ≤ h2(perr) + 2kperr (4)

H(A|Σ) ≥ ΦN(p∗
err) (5)

where ΦN is some decreasing convex function.

!4Computing [upper-bounding] H(A) is worst-case #P-complete [(probably) NP-hard].

Experiment

Consider a noise model N ⊗n, where

N (ρ) = pIρ + pXXρX + pY Y ρY + pZZρZ. (6)

We can define H(p) = H({pI, pX, pY , pZ}). Some facts:
H(A) ≤ min(nH(p), n + k) H(Σ) ≤ (n − k) (7)

We generate random [[n, k]] codes and compute (optimal) decoder performance:

Figure 2. LEFT: (i) Random codes are more nondegenerate for small H(p). (ii) H(A) < nH(p) implies more
degeneracy. Dashed line H(A|Σ) = kH(p) is analytical solution for a “canonical” stabilizer code. Solid lines
indicate bounds from Eq. 7. RIGHT: MLD accuracy for random codes is bounded by Eqs. 4-5

Applications: Shannon/learning theory for MLdec

Decoding an [[n, k]] QECC (no fault tolerance) as a learning problem (MLdec):

1. Given: A dataset

D = {(x1, y1), . . . , (xN , yN)}, xi = Σ(Ei), yi = A(Ei) (8)

and a loss function `

2. Learn: a decoder function f : T → L (e.g. NN) minimizing empirical risk
f̂ = arg min

f
E

(x,y)∼D
`(f (x), y) (9)

3. Hope: Generalization error is small, e.g. for 0-1 loss
loss(f̂ ) ≥ min

f
E

E∼pE

`(f (x(E)), y(E)) := p∗
err (10)

Variants

Generative models learn f̂ by first approximating p̂LSΣ, then

f̂ (x) = arg max
`

p̂L|Σ(`|x) (11)

Noisy: Data (x, y) or underlying circuit may be noisy.

Data-driven: Using empirical data instead of simulating (σ(Ei), A(Ei)) (unrealistic). e.g.
surface code detector data:

x = {〈gj〉(0), . . . , 〈gj〉(t)}∀j, y = |〈L̄〉(0) − 〈L̄〉(t)| (12)

Non-degenerate Choosing yi = Ei instead of yi = A(Ei) (suboptimal, but easier?)

Variant Refs

simulated data
non-degenerate [4–10]

degenerate [10–15]

data-driven/fault-tolerant [16–28]

Table 1. Survey of Variants of existing MLdec schemes.

Design considerations for ML decoders

1. Relating the model architecture to out-of-distribution generalization
What models can represent the group structure of Fig. 1?

2. Side-information [24]: x contains upstream raw data (e.g. IQ-plane coords)

3. Lifting ML decoders into fault-tolerant settings [29]

4. Regimes for non-degenerate decoding, where yi = Ei instead of A(Ei)
At low H(p), degenerate decoding ≈ non-degenerate decoding
Otherwise, non-degenerate decoding is sub-optimal

5. Equivariance [12, 28] vs. noise tolerance: How well can group structure be learned with

noisy labels?

Howmuch training data dowe need?

Naive: |S| = 2n−k unique data are sufficient for MLD

Shannon theory: If Etyp contains “typical errors” s.t. Pr(Etyp) > 1 − ε, then asymptotically,

|Etyp| ≈ 2nH(p) (13)

!4In less noisy systems, we don’t care about most syndromes.

Noiseless syndromes: a look-up table of N ≈ 2H(A) ≤ |Etyp| data is sufficient.
Compare to linear-algebraic sensitivity of Ref. [10] (not noise-specific)

Learning theory: For random stabilizers, suppose labels contain the maximum-likelihood

coset:

(xi, yi) = (σi, arg max
a

PA|Σ(a|σi)). (14)

Say fD is trained on a dataset of |D| = N points. Find h such that

E
D

Pr
E∼pE

(fD(σ(E)) 6= A(E)) < h(N) (15)

The form of h(N) will decide how effective we expect MLdec to be.
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