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Abstract
Quantum convolutional neural networks (QCNNs) are quantum circuits for recognizing quantum phases of matter at low sampling cost and have been designed for condensed matter systems in one dimension. Here we construct a QCNN that can perform
phase recognition in two dimensions and correctly identify the phase transition from a toric code phase with Z2-topological order to the paramagnetic phase. The network also exhibits a noise threshold upto which the topological order is recognized. Our work
generalizes phase recognition with QCNNs to higher spatial dimensions and intrinsic topological order, where exploration and characterization via classical numerics becomes challenging.

Quantum Convolutional Neural Networks (QCNNs)

• Quantum circuit, inspired by classical convolutional neural networks,
Renormalization Group (RG) flow and the Multiscale Entanglement
Renormalization Ansatz (MERA) [1].

Schematic of QCNN circuit from [1]. Time propagates from the
bottom to the top: convolutional layer (blue), pooling layer (orange)

and fully connected output layer (purple). The convolutional and
pooling layers can be repeated to increase output confidence.
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• Modification: Shortening QCNN to constant depth in the number of qubits
by cancellation of subsequent convolutions
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Convolution Pooling

OutputInput

• QCNN removes short-range information and maps large-scale information
to output qubits

• QCNN for phase recognition yields improvement of sampling
complexity at phase boundary compared to direct measurement [2]

Inspiration by MERA and RG Flow
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• Multiscale Entanglement Renormalization Ansatz (MERA) (left, taken
from [1]):
◦ Tree-structured quantum circuit
◦ Generates many-body state by entangling additional qubits in a layer

structure
• Renormalization Group (RG) flow (right) [3]:

◦ Goal: finding phase of input state |ϕi⟩
◦ Procedure:

▶ Define reference states |ψi⟩ for corresponding topological phases
SPTi

▶ States of same phase can be characterized as reference state
with local unitary perturbations |ϕi⟩ = Ui,E |ψi⟩

▶ Phase transition cannot be crossed using only local unitaries
▶ Implement error correction, that removes unitaries Ui,E
▶ Recover reference state of the corresponding phase

Toric Code

• 2-dimensional periodic qubit
lattice with Hamiltonian
HTC = −
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with plaquette operator (blue)
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and vertex operator (orange)
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• Qubits displayed as gray and
green dots
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• Toric code in magnetic field

Hmag = HTC − hZ
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• Single-qubit Pauli noise channel in the form of

ρ = E(|ψ⟩ ⟨ψ|) =
m∑
l=0

Kl |ψ⟩ ⟨ψ|K†
l

with Kl ∈ {√
p11,

√
pXX,

√
pZZ}⊗N

Phase Transition

• Toric code undergoes a phase
transition in parallel magnetic
field [4]

• Critical field strength for magnetic
field in Z-direction: hZ = 0.3284

• Goal: observing threshold with
reduced sample complexity via
measurement of QCNN output

phase diagram from [4]

Convolution

• Need to find circuit, which maps stabilizer measurements to qubits:
◦ Vertex stabilizers are mapped to gray (horizontal) qubits
◦ Plaquette stabilizers are mapped to green (vertical) qubits

• Starting point: adjoint ground state preparation circuit (a-e)
• Apply additional CNOTs for correct mapping of stabilizers (f, g)
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Pooling

• Local error correction (LEC) on set of target qubits
• Goal: mimicking RG flow and recovering pure toric code as reference state

on target qubits
• Chosen qubits will be propagated to next layer
• Pooling circuit:

◦ Choose set of target qubits tj on vertical lattice edges (red circle) and
horizontal lattice edges (blue circle)

◦ Target qubits must be spaced out, such that the nearest neighbors do
not overlap

◦ Call nearest neighbors control qubits ci,j ∈ N (tj)
◦ Apply CNOTs between control qubits and target qubits
◦ Apply Toffolis between nearest neighbors of control qubits

nk,i,j ∈ N (ci,j), controls qubits and target qubits

UPl
=

 ∏
c∈N (t)

∏
k∈N (c)\t

ToffkctCNOTct

 +

+

MPS Simulations for Ground States in Magnetic Field
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Full simulated range (left), higher sample resolution around
transition (right),

Phase transition driven by Hamiltonian,
Topologically ordered phase → Paramagnetic phase

• QCNN output:

M l
QCNN = 2

Nl

 Nl∑
j=1

mj

 − 1

⟨M l
QCNN⟩ =

{
1 if topol. phase
0 if paramagnetic/disordered .

• with Nl: number of target qubits on lattice
and mj: outcome of Z-measurement on target-qubit j

• Simulation via Matrix Product States (MPS) on 2D-lattice
• Number of qubits Nq = 486
• Increase strength of magnetic field hZ
• QCNN identifies transition correctly
• Increased step-likeness with additional pooling layers

Simulations for Incoherent Pauli Noise
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Transition on toric code driven by incoherent Pauli noise,
Topologically ordered phase → Disordered regime

• Simulations for Pauli noise classically computed via the evolution of
toric code stabilizers under errors

• Number of qubits Nq ≈ 9.6 × 106

• Transition in QCNN output at Pauli noise rate pZ = 2.28%
• Transition can be interpreted as a decoder threshold of the local error

correction in pooling
• Simultaneous Pauli noise for in X- and Z-basis can be treated on the two

separate sublattices at the same time (2D plots)
• Threshold simultaneously holds for both basis → square area (yellow)

characterized as topological
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Phase Recognition in the Presence of Pauli Noise
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• Combination of ground states of the Hamiltonian with Pauli
noise

• Variation of the strength of the magnetic field in Z-direction hZ
for simultaneous Pauli-X and Pauli-Z error rates pX = pZ

• Phase recognition for the transition from the topological to the
paramagnetic phase functional up to Pauli error threshold
p = 2.28%

• After surpassing the Pauli threshold the pooling introduces
additional errors that dampen the QCNN output

• Density of errors increases with each subsequent pooling
layer
→ Output curve of higher layer drops below the one of the
previous layer

Conclusion and Outlook
Summary:

• Successful construction of QCNN for 2D toric code with phase
recognition

• Application for lattice perturbation by random Pauli noise and magnetic field
• QCNN identifies phase transition by design, no training required
• Implementation as quantum circuit or classical post-processing

Outlook:
• Improvements for QCNN pooling?
• Increase error threshold for random Pauli noise?
• Improvements by training of parameterized circuit?
• Implementation on Hardware for small system?
• Use 2D tensor network to generate test data?
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