Learning disordered interactions between Rydberg atoms from experimental shapshots

Olivier Simard^{1,2*}, Anna Dawid, Joseph Tindall, Michel Ferrero, Anirvan Sengupta and Antoine Georges

¹Collège de France, 11 place Marcelin Berthelot, 75005 Paris, France ²CPHT, CNRS, École Polytechnique, IP Paris, F-91128 Palaiseau, France

Objectives

- Can one infer experimentally realized Hamiltonian in cold atom systems in a scalable manner through measurements?
- What machine learning model and physical input should be used?
- Are there regions in the physical parameter space facilitating the learning process?

Figure: Elements of a GNN architecture. a) Graph input consisting of the spin-spin correlation functions. b) GNN hidden layer updates assisted by aggregated message passing between neighboring nodes. c) Task neural network predicting distances between nodes based off physical observables.

Introduction

We make use of the Principal Neighbor Aggregator (PNA) [I] graph neural network (GNN) to predict the relative nearest-neighbor (NN) atomic displacements in Rydberg arrays [2] from the local magnetization and spin-spin correlation functions. For practicability, we ought to

- use a limited amount of physical observables (correlators) for training,
- use a viable number of snapshot measurements,
- map out accurately and rapidly the effective Hamiltonian implemented.

Models and Methods

Transverse-field Ising model

The two-dimensional transverse-field Ising model (TFIM) reads

$$\hat{H} = \sum_{i \neq j} \frac{C_6}{\underbrace{R_{ij}}_{i=J_{i,j}}^6} \hat{\sigma}_i^z \hat{\sigma}_j^z + \hbar\Omega \sum_i \hat{\sigma}_i^x + \hbar\delta \sum_i \hat{\sigma}_i^z, \quad (\mathbf{I})$$

Case #1	M and Ω -history
Case $#2$	M , $\chi^{\rm NN}$ and Ω -history
Case #3	M , $\chi^{\rm NN}$, $\chi^{\rm NNN}$ and Ω -history
Case $#4$	M , $\chi^{\rm NN}$, NNN edges and Ω -history
Case #5	$\chi^{\rm NN}$, NNN edges and Ω -history
Case #6	M , $\chi^{\sf NN}$, $\chi^{\sf NNN}$ and Ω -history in Z+X bases
Table:	Summary of the training cases used in this work.

Results

Figure: A view of the metrics so far considered (see annotations) as a function of the cluster size. The case #6 is considered. The dataset has been generated using a the same finite number of snapshots.

Conclusion

- The amount of cluster sizes in training dataset matters when extrapolating to larger sizes.
- Constraining the GNN physical input to NN spin-spin correlation functions is sufficient to perform scalable Hamiltonian learning.
- Training with more 'weightless' graph edges generates an architectural benefit, akin to skip connections.
- Compiling the dataset samples across an array $\vec{\Omega}$ helps gathering up the information from the more relevant values of Ω in the phase diagram.

where i, j runs over all atomic positions, $C_6/\hbar \simeq$ 5.420158×10^{6} rad $\cdot \mu s^{-1} \cdot \mu m^{6}$ is the dipole-dipole interaction term [3]. Ω stands for the transverse Ising field (Raby frequency), δ for the detuning field, $\hat{\sigma}^{z(x)}$ denotes the (off)diagonal real Pauli matrix.

The physical input consists in the local magnetization M_i dressing the graph nodes

$$M_i = \langle \hat{\sigma}_i^z \rangle_{0;\vec{\Omega}} \tag{2}$$
 and spin-spin correlation functions $\chi_{i,j}$ weighting the graph edges

 $\chi_{i,j;\vec{\Omega}} = \langle \hat{\mathbf{S}}_i^z \cdot \hat{\mathbf{S}}_j^z \rangle_{0;\vec{\Omega}},$

(3)

(4)

for a sequence of transverse field $\vec{\Omega}$, with

$$\hat{\mathbf{S}}_{l}^{z} = \frac{1}{2} \sum_{\mu,\nu} \hat{\Psi}_{l,\mu}^{\dagger} \sigma_{\mu,\nu}^{z} \hat{\Psi}_{l,\nu} ,$$

where $\hat{\Psi}_l \equiv (\hat{c}_{l,\uparrow}, \hat{c}_{l,\downarrow})$. $\hat{c}_{l,\sigma}^{(\dagger)}$ is the electronic annihilation (creation) operator, on site l with spin σ . The indices μ, ν span over the spin space and the Hadamard operator de $\Omega/2\pi$ [MHz]

Figure: Phase diagram at $\delta = 0$. The blue box encloses the Ω -history. The inset plot is a zoom within the black box.

• Overcompleting the prediction-vs-truth correspondance by including longer-range correlation functions improves the outcome of the model at larger cluster sizes.

References

[1] Gabriele Corso, Luca Cavalleri, Dominique Beaini, Pietro Liò, and Petar Veličković.

Principal neighbourhood aggregation for graph nets, 2020.

[2] A. Browaeys and T. Lahaye.

Many-body physics with individually controlled Rydberg atoms. Nat. Phys., 16(2):132–142, 2020.

[3] Pascal Scholl, Michael Schuler, Hannah J. Williams, Alexander A. Eberharter, Daniel Barredo, Kai-Niklas Schymik, Vincent Lienhard, Louis-Paul Henry, Thomas C. Lang, Thierry Lahaye, Andreas M. Läuchli, and Antoine Browaeys. Quantum simulation of 2d antiferromagnets with hundreds of rydberg atoms.

Nature, 595(7866):233–238, July 2021.

* Email: olivier.simard@polytechnique.edu

fined in the Z basis is applied onto the wave function to measure in the X basis.

PNA GNN

We minimize the squared L^2 modulus of the difference between the predictions $\hat{\mathbf{y}}$ and the truths \mathbf{y} :

 $MSE(\mathbf{y}, \hat{\mathbf{y}}) = \|\mathbf{y} - \hat{\mathbf{y}}\|^2.$

The coefficient of determination is

$$R^{2} = 1 - \frac{\sum_{i} (y_{i} - \hat{y}_{i})^{2}}{\sum_{i} (y_{i} - \bar{y}_{i})^{2}},$$
where error (MAE)

and the mean absolute error (MAE)

Figure: Top panel: R^2 for various cluster sizes in the test dataset. Middle panel: Mean absolute error of predictions. Bottom panel: Median of the absolute error (MEDAE) of predictions vs truths. The vertical grey line indicates the extrapolating threshold. Cases are detailed in the table. (5)

