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Introduction

Differentiable quantum circuits SPMe battery model

Many scientific problems are formulated in the form of Partial Differential Equations (PDEs). The most popular approach to solve these systems are mesh-based methods, 
which are powerful but complex and with severe scaling issues. Physics-Informed Neural Networks (PINNs) are part of the emerging field of Scientific Machine Learning
(SciML) and are proposed as an alternative paradigm, using a NN as universal function approximator (UFA) to model the solution of the target PDE. The key advantages 
of this approach are its flexibility and inference capabilities, and they offer the opportunity to directly embed system properties and use experimental data for 
regularization purposes.

This research showcases the use of Differentiable Quantum Circuits (DQC), a hybrid quantum-classical algorithm inspired from PINNs, applied to solving systems of PDEs 
relevant to battery simulation. We validate the algorithm's accuracy in generating solutions for multiple variables simultaneously. Given the high expressivity provided by 
its large basis-set (which scales exponentially with the register size), and the low depth required to converge, this algorithm can perform well on complex tasks that are 
challenging for its classical counterparts while remaining NISQ-compatible.

DQC[1] is a hybrid quantum-classical algorithm that can be 
used to solve systems of nonlinear differential equations. The 
trial solution is encoded in the expectation value of an 
observable in a parametrized quantum circuit.

Its main components are:

• The feature map (FM) encoding. Input data is encoded in 
the quantum circuit via a non-linear quantum feature map. 
The FM derivatives can be exactly calculated through 
automatic differentiation. The choice for a specific FM 
depends on the nature of the problem and leads to different 
spectral representations. Trainable parameters can be used to 
improve flexibility and convergence[2].

• Variational quantum circuit. Used to manipulate the latent 
space basis function and improve the circuit’s expressive 
power.

• The loss function. Measures the quality of the solution 
generated by the quantum circuit. When solving systems of 
differential equations, the loss function measures how well the 
PDE and boundary conditions terms are satisfied.
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We solve the Single Particle Model with 
electrolyte[3] (SPMe) for a Lithium-ion (Li-ion) 
battery. The SPMe is a full-battery model that 
captures the basic physics of the battery, 
simulating the behavior of lithium-ion 
concentration in the negative and positive 
electrodes as well as in the electrolyte.

We benchmark our DQC implementation 
against mesh-based solutions (produced with 
PyBamm) and classical PINNs built with 
different underlying architectures (MLP and 
Siren[4]).

Each DQC model is built with:

• 4-qubits register
• In-series Chebyshev tower FM

• 4 layers of hardware efficient ansatz

To investigate whether the loss landscape of 
DQC can be explored in an efficient way, we 
train the solid-phase model with different 
optimizers.

We find that standard gradient-based (GD) 
methods navigate very slowly compared to 
the Quantum Natural Gradient (QNG), which 
takes in account geometry of the parameter
space. 

We also test a SPSA approximation of the QNG 
which only requires and overhead of
O(1) circuit evaluations compared to vanilla 
GD.

Solid- and electrolyte-phase concentrations 

are then injected into a simple algebraic 

expression to obtain the terminal voltage

Both systems require a mix of Dirichlet and Neumann boundary conditions.

DQC trainability

Next steps
• Apply DQC to more complex scenarios, where classical mesh-based solvers and PINNs struggle to converge 

(e.g. high-dimensionality, multi-physics simulations).

• Enhance the capabilities of DQC by developing novel feature maps encoding techniques and improve 
inductive bias techniques for specific families of problems.

• Investigate transfer learning possibilities between different domains and problem specifications. 
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