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Quantum neural networks based on parametrized quantum circuits, measurements and feedforward can process quantum states produced by
quantum computers, to detect non-local quantum correlations with reduced measurement and computational efforts. Here we construct

quantum convolutional neural networks (QCNNs) to recognize symmetry-protected topological (SPT) phases in the presence of incoherent
errors, simulating the effects of decoherence under NISQ conditions. Using matrix product state simulations, we show that the QCNN output

is robust against symmetry-preserving errors, provided that the error channel is invertible, and against symmetry-breaking errors, below a
threshold error probability. Even though the error tolerance is limited close to phase boundaries due to a diverging correlation length, the
QCNNs can precisely determine critical values of Hamiltonian parameters. To facilitate the implementation of QCNNs, we show how to
shorten logarithmic-depth QCNNs to a constant-depth quantum circuit and classical post-processing. The constant-depth circuit reduces

sample complexity exponentially with system size in comparison to the direct sampling of the QCNN output using local Pauli measurements.
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• Motivated by multiscale entanglement
renormalization ansatz [1]

• Cluster state |CN 〉: ground state for N
qubits and h1 = h2 = 0

• Convolutional and pooling (CP) layer:
renormalization and error correction

E|CN 〉 CP−−→ |CN/3〉, for E = I, Xj , Zj

• Improve the QCNN design of [1] to
correct symmetry-breaking Z errors

odd layers:
X-error correction
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even layers:
Z-error correction
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) products of SOPs of length O(3d)
for depth d = O(log3N)

PHASE DIAGRAM

Depth d = 4, pX = pZ = 0.03

Phase boundary (crosses) by infinite DMRG

CLUSTER-ISING HAMILTONIAN

H =−
∑
j

(J Cj + h1Xj + h2XjXj+1)

• Cj = ZjXj+1Zj+2, Paulis Xj , Zj

• Z2 × Z2 symmetry-protected topologi-
cal (SPT) order [2]

• Symmetries Pe/o =
∏

j X2j/2j+1

• String order parameter (SOP) [3]

Sjk = ZjXj+1Xj+3...Xk−3Xk−1Zk

ERROR TOLERANCE

ρ = E(|GS〉〈GS|) =

m∑
l=0

Kl|GS〉〈GS|K†l

• K0 =
√

1− pE1 and K1 =
√
pEE

• NISQ errors E = X,Z with probability
pE due to decoherence

• Exact ground state |GS〉 (DMRG)
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• Symmetry-preserving X errors toler-
ated provided that E is invertible

• Symmetry-breaking Z errors tolerated
below threshold probability pZ = 0.054

• SOPs vanish for any error probability

PHASE BOUNDARY (PB)
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• QCNN detects PB as a dip in ∂x
∂h2

CONSTANT-DEPTH CIRCUIT
classical post-processing
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Equivalent QCNN circuit: Two layers of CZ
gates and classical post-processing

• Push CZ gates through pooling layers

CZijC̄C̄NOTkl;jCZij = C̄C̄NOTkl;jC̄C̄Zkl;i

• Exponential reduction of sample com-
plexity due to the remaining CZ gates

EXPERIMENTAL REALIZATION[4]
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• 7-qubit superconducting processor [4]

• Gates with infidelity ε = 0.7− 3.8%

• Average infidelity F̃ = 0.34 and F̃ =
0.23 for SOP and QCNN, respectively

CONCLUSIONS
• Errors tolerated for pZ < 0.054

• Reduced sample complexity
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