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Objectives

* Can one infer experimentally realized
Hamiltonian in cold atom systems in a scalable
manner through measurements?

e What machine learning model and physical input
should be used?

o Are there regions in the physical parameter space
facilitating the learning process?

Introduction

We make use of the Principal Neighbor Aggregator
(PNA) [1] graph neural network (GNN) to predict the rel-
ative nearest-neighbor (NN) atomic displacements in Ryd-
berg arrays [2] from the local magnetization and spin-spin
correlation functions. For practicability, we ought to
* use a limited amount of physical observables
(correlators) for training,
® use a viable number of snapshot measurements,
® map out accurately and rapidly the effective
Hamiltonian implemented.

Models and Methods

Transverse-field Ising model
The two-dimensional transverse-field Ising model (TFIM)

reads
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where 7,7 runs over all atomic positions, Cz/h =~

5.420158 x 10°rad - s~ ' - um” is the dipole-dipole interac-

tion term [3]. {2 stands for the transverse Ising field (Raby

frequency), 0 for the detuning field, 5~ () denotes the (off)-

diagonal real Pauli matrix.

The physical input consists in the local magnetization M,

dressing the graph nodes

M; = <6z>o;ﬁ (2)

i
and spin-spin correlation functions x;; weighting the

graph edges

Xi G = <S7,Z ' S§>0;§7 (3)

for a sequence of transverse field {2, with

SZZ — % Z \Ij;r”uo'zqujl,u ,
(L,

where U, = (G4, Cry)- 852 is the electronic annihilation

(creation) operator, on site [ with spin 0. The indices p, v

span over the spin space and the Hadamard operator de-

fined in the Z basis is applied onto the wave function to

measure in the X basis.

PNA GNN

We minimize the squared L? modulus of the difference be-
tween the predictions y and the truths y:

MSE(y,y) = [ly — 31"

The coefficient of determination is
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and the mean absolute error (MAE)
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Figure: Elements of a GNN architecture. a) Graph input consisting
of the spin-spin correlation functions. b) GNN hidden layer updates
assisted by aggregated message passing between neighboring nodes.
c) Task neural network predicting distances between nodes based
off physical observables.

Case #1 M and ()-history

Case #2 M, ¥V and Q-history

Case #3 M, x"N, v"N'and Q-history

Case #4 M, "V, NNN edges and Q-history

Case #5 ¥V, NNN edges and Q-history

Case #6 M, "V, ¥""N and Q-history in Z+X bases

Table: Summary of the training cases used in this work.

Results
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Figure: Phase diagram at 0 = 0. The blue box encloses the §2-history.
The inset plot is a zoom within the black box.
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Figure: Top panel: R for various cluster sizes in the test dataset.
Middle panel: Mean absolute error of predictions. Bottom panel:
Median of the absolute error (MEDAE) of predictions vs truths. The
vertical grey line indicates the extrapolating threshold. Cases are
detailed in the table.
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Figure: A view of the metrics so far considered (see annotations) as
a function of the cluster size. The case #6 is considered. The
dataset has been generated using a the same finite number of
snapshots.

Conclusion

e Theamount of cluster sizes in training dataset matters
when extrapolating to larger sizes.

* Constraining the GNN physical input to NN
spin-spin correlation functions is sufficient to
perform scalable Hamiltonian learning.

® Training with more ‘Weightless’ graph edges generates
an architectural benefit, akin to skip connections.

o Compiling the dataset samples across an array Q) helps
gathering up the information from the more relevant
values of {2 in the phase diagram.

® Overcompleting the prediction-vs-truth
correspondance by including longer-range correlation
functions improves the outcome of the model at
larger cluster sizes.
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