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Objectives

• Can one infer experimentally realized
Hamiltonian in cold atom systems in a scalable
manner through measurements?

• What machine learning model and physical input
should be used?

• Are there regions in the physical parameter space
facilitating the learning process?

Introduction

We make use of the Principal Neighbor Aggregator
(PNA) [1] graph neural network (GNN) to predict the rel-
ative nearest-neighbor (NN) atomic displacements in Ryd-
berg arrays [2] from the local magnetization and spin-spin
correlation functions. For practicability, we ought to

• use a limited amount of physical observables
(correlators) for training,

• use a viable number of snapshot measurements,
• map out accurately and rapidly the effective

Hamiltonian implemented.

Models and Methods

Transverse-field Ising modelTransverse-field Ising model
The two-dimensional transverse-field Ising model (TFIM)
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where i, j runs over all atomic positions, C6/ℏ ≃
5.420158 × 106rad · µs−1 · µm6 is the dipole-dipole interac-
tion term [3]. Ω stands for the transverse Ising field (Raby
frequency), δ for the detuning field, σ̂z(x) denotes the (off)-
diagonal real Pauli matrix.
The physical input consists in the local magnetization Mi

dressing the graph nodes

Mi = ⟨σ̂z
i ⟩0;Ω⃗ (2)

and spin-spin correlation functions χi,j weighting the
graph edges
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for a sequence of transverse field Ω⃗, with
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where Ψ̂l ≡ (ĉl,↑, ĉl,↓). ĉ
(†)
l,σ is the electronic annihilation

(creation) operator, on site l with spin σ. The indices µ, ν
span over the spin space and the Hadamard operator de-
fined in the Z basis is applied onto the wave function to
measure in the X basis.

PNA GNNPNA GNN
We minimize the squared L2 modulus of the difference be-
tween the predictions ŷ and the truths y:

MSE(y, ŷ) = ∥y − ŷ∥2.

The coefficient of determination is
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and the mean absolute error (MAE)
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Figure: Elements of a GNN architecture. a) Graph input consisting
of the spin-spin correlation functions. b) GNN hidden layer updates
assisted by aggregated message passing between neighboring nodes.
c) Task neural network predicting distances between nodes based
off physical observables.

Case #1 M and Ω-history
Case #2 M , χNN and Ω-history
Case #3 M , χNN, χNNN and Ω-history
Case #4 M , χNN, NNN edges and Ω-history
Case #5 χNN, NNN edges and Ω-history
Case #6 M , χNN, χNNN and Ω-history in Z+X bases

Table: Summary of the training cases used in this work.

Results
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Figure: Phase diagram at δ = 0. The blue box encloses the Ω-history.
The inset plot is a zoom within the black box.
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Figure: Top panel: R2 for various cluster sizes in the test dataset.
Middle panel: Mean absolute error of predictions. Bottom panel:
Median of the absolute error (MEDAE) of predictions vs truths. The
vertical grey line indicates the extrapolating threshold. Cases are
detailed in the table.
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Figure: A view of the metrics so far considered (see annotations) as
a function of the cluster size. The case #6 is considered. The
dataset has been generated using a the same finite number of
snapshots.

Conclusion

• The amount of cluster sizes in training dataset matters
when extrapolating to larger sizes.

• Constraining the GNN physical input to NN
spin-spin correlation functions is sufficient to
perform scalable Hamiltonian learning.

• Training with more ‘weightless’ graph edges generates
an architectural benefit, akin to skip connections.

• Compiling the dataset samples across an array Ω⃗ helps
gathering up the information from the more relevant
values of Ω in the phase diagram.

• Overcompleting the prediction-vs-truth
correspondance by including longer-range correlation
functions improves the outcome of the model at
larger cluster sizes.
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