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Abstract

In this work, we take the first step of applying
deep learning techniques in quantum gravity.
We utilise neural network quantum states [1]
(NQS) to approach arguably the most difficult
and open question in loop quantum gravity
(LQG): finding and interpreting solutions to the
quantum Hamilton constraints (quantum Ein-
stein equations). We explore 3-dimensional Eu-
clidean gravity [2] in a certain weak coupling
limit and rewrite the constraint problem as a
ground state search problem by employing the
Master constraint program. We consider two
regularisations for the constraints and demon-
strate that the NQS ansatz can arrive at solu-
tions efficiently and accurately for large Hilbert
spaces. We also investigate the similarities and
geometric properties of the obtained solutions.

Objectives
« Utilise NetKet [3] for the computational setup

» Employ the NQS ansatz and construct a net-
work architecture robust enough to solve LQG
constraints

» Compare the solutions of different regularisa-
tions of the quantum Hamilton constraint

« Explore physical properties of the solutions

Physics Results
» NetKet framework robust enough to handle
complicated LQG operators

« States near the kernel of both constraints
successfully obtained

» The obtained states indicate that the two
regularisations describe some common physics

« Investigated properties of geometric
operators such as volume

Outlook

» Work in gauge invariant subspaces

» Explore 4d Euclidean gravity in the weak
coupling limit

» Characterise the solutions of the constraint

» Release of computational package neuralgx:
a package for NQS in LQG built upon NetKet
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Methodology and Computational Results

Hilbert Space

The kinematical Hilbert space is defined on a fixed graph o
Y. It has a basis labeled by charge vectors 7. € 73 defined

on the edges of 7. Every charge m,"‘ € M is allowed to take

values in the range[—mmaz, < * s Mimaz) -

The vertices constitute “atoms” of space and the edges repre- o
sent the gluing of those atoms (akin to bonds). Charge labels

Figure 1: The fixed graph 7Y used in this work
are quantum numbers of geometry (e.g. area, volume, ...). Ver-

composed of 5 edges and 4 vertices.

tices carry volume indicated by the shaded plaquettes in the P (A
. . ) Winoe dim M mem. C'
figure. The gluing of such plaquettes is understood as area. e
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Spin-network functions (SNFs) W € H on 7y can be under- 9 30X10° 7 45x10° TB
stood as a states of space molecule, where the Hilbert space 3 4.7x102 1.8x10" TB
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Network Architecture

The neural network quantum state (NQS) ansatz parametrises the
many-body wave function such that (in the case of the restricted Boltzmann
machine architecture) the amplitude in a state describing N-particles each
with 0 degrees of freedom is given by y
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where h; denote the nodes in the hidden layers and {ai,bi; Wij} are the set

of weights. To find a solution for the constraint C' :find all network param-

eters Params(¥) such that min(C') is minimised while |[Params(¥)| < dim #

BatchNormalization

Hard SiLU

War(og, - MaxPooling

AveragePooling

In this work: :::d
« Architecture emp|0yin9 CNNs Mmaz | Params(¥)| Params(¥)/ dim H
. - Resh:
« Attention mechanism and ResNet — — -
1 7641 0.053 %

i i i Multiply

like skip connections 2 6412 2.101x10° % | ¢ w
« Scalable depending on dim H 3 6501 1.369X107 % o
o “UIni » (i _ Hard SiLU

AIm.ost ulnlversal (different con 4 93999 1 127X10° %

straints, different graphs)

AveragePooling

Ground State Search

In this weak coupling limit, 3d Euclidean gravity is equivalentto a U/(1)® BF-theory. We quantise it
using loop quantum gravity (LQG) methods and investigate two master constraints: C' = F' + G
and Crpe = H + HY + G where
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is a regulatisation of the quantum Hamilton constraint arising from LQG.
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% " Table 1: The results of the ground state search for a solution to

= . the C' constraint (* ED results are estimated).
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Figure 2: The ground state search simulation for My, q = 2
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