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Theory: Decoders and hypothesis testing

Can we use single-parameter “noisiness” of a system to predict the accuracy of decoding?

Decoding an [[n,k]] Quantum Error-Correcting Code (QECC) as hypothesis testing:
F s Ay s A (1)

1. Anerror ' € P,, occurs

2. Einduces coset label A = (L,T"), combining logical error L and pure error T' .
3. The pure error T gives a syndrome >

4. We predict A for which logical error occured

Fieure 1. Partition the Pauli group P,, into a “prism” [1] of £ x S x T (dimensions 22 x 27=% x 27=F) Logical
operators are in L := N(S)/S, stabilizersare in S = (g1, ..., go—x), pure errors are in T = {ty,...,t,—x} with

A good decoder has small error probability pe..(A|X) := Pr, (A # A). A Maximum Likelihood
Decoder (MLD) achieves a minimum error p? ..

Bounding decoder accuracy with entropy

The Shannon entropy of a variable X ~ px is
H(X) = — ZPX(ZC) log px(x) := H(px) (2)

For QECCs, the conditional entropy satisfies

H(A|X)=H(A)— H(X) (3)

This gives us upper |2] and lower [3] bounds for the MLD accuracy:
H(A|X) < ho(Perr) + 2kperr (4)
H(A[Z) =2 On(perr) (5)

where ® 5 is some decreasing convex function.

ACompuﬁng lupper-bounding] H(A) is worst-case #P-complete [(probably) NP-hard].

Experiment

Consider a noise model N'®" where
N(p) = pip+ pxXpX +pyYpY +pzZpZ. (6)
We can define H(p) = H({p1, px,py,pz}). Some facts:
H(A) < min(nH(p),n + k) HY) < (n-—k) (/)

We generate random [[n, k]] codes and compute (optimal) decoder performance:
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Figure 2. LEFT: (i) Random codes are more nondegenerate for small H(p). (i) H(A) < nH(p) implies more
degeneracy. Dashed line H(A|X) = kH (p) is analytical solution for a “canonical” stabilizer code. Solid lines
indicate bounds from Eq. /. RIGHT: MLD accuracy for random codes is bounded by Egs. 4-5

Applications: Shannon/learning theory for MLdec

Decoding an [[n, k]] QECC (no fault tolerance) as a learning problem (MLdec):
1. Given: A dataset

D = {(xlayl)a"w(x]\fay]\f)}) Ly = Z(EZ>7 Yi :A(EZ) <8)
and a loss function ¢

7. Learn: a decoder function f: T — L (e.g. NN) minimizing empirical risk

A

f=argmin B {(f(x),) ()

3. Hope: Generalization error is small, e.g. for 0-1 loss

A

oss(f) > min E ((f(a(E)),y(E)) = piy, (10)

Variants

= Generative models learn f by first approximating prsy, then

J?(CU) = arginaxﬁﬁg(éyx) (11)

= Noisy: Data (z,y) or underlying circuit may be noisy.

= Data-driven: Using empirical data instead of simulating (o(E;), A(E;)) (unrealistic). e.g.
surface code detector data:

v={(g)", .. (g, y=L)" — (L)) (12)
= Non-degenerate Choosing y; = E; instead of y; = A(FE;) (suboptimal, but easier?)

Variant Refs
non-degenerate 14-10]
simulated data
degenerate [10-15]

data-driven/fault-tolerant [16-28]

Table 1. Survey of Variants of existing MLdec schemes.

Design considerations for ML decoders

1. Relating the model architecture to out-of-distribution generalization
= \What models can represent the group structure of Fig. 17

2. Side-information [24]: x contains upstream raw data (e.g. |Q-plane coords)

3. Lifting ML decoders into fault-tolerant settings [29]

4. Regimes for non-degenerate decoding, where y; = E; instead of A(FE;)

= At low H(p), degenerate decoding ~ non-degenerate decoding
= Otherwise, non-degenerate decoding is sub-optimal

5. Equivariance [12, 28] vs. noise tolerance: How well can group structure be learned with
noisy labels?
How much training data do we need?
Naive: |S| = 2"~* unique data are sufficient for MLD

Shannon theory: If &, contains "typical errors” s.t. Pr(&,,,) > 1 — ¢, then asymptotically,
| Eryp| & 2" () (13)

Aln less noisy systems, we don't care about most syndromes.

* Noiseless syndromes: a look-up table of N ~ 284 <|&, | data is sufficient.
= Compare to linear-algebraic sensitivity of Ref. [10] (not noise-specific)

Learning theory: For random stabilizers, suppose labels contain the maximum-likelihood
coset:
(25, yi) = (04, arg max Pyy(aloy)). (14)

a

Say fp is trained on a dataset of |D| = N points. Find h such that
E Pr (fo(o(E)) # A(E)) < h(N) (15)

D E~pg
The form of h(N) will decide how effective we expect MLdec to be.
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