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The 1ssue

¢ Problem 1: Current Reinforcement Learning (RL) techniques for Quantum Circuit Optimization (QCO)
suffer from a high-dimensional action space.

e Problem 2: ZX-approaches for QCO. Transtorm the Quantum Circuit into a ZX-diagram and apply
oraph-theoretic rules to simplify it. A circuit extraction process needed to obtain the final circuit from the
/. X-diagram.

— PROs: Small action space.
— CONs: Optimal order of rules application is hard to find. Often increase the two qubit gate count.

e Motivation: Implement a RL agent that learns the optimal sequence of actions in the ZX-diagram such that
the gate count is reduced after circuit extraction.

e Ultimate goal: Achieve a circuit optimization algorithm useful for target circuits of the NISQ) era.

The approach Impact |1}

Actions to simplify a ZX-diagram. Two principal rules to e Showcased its applicability
simplify a ZX-diagram: Local complementation (lc) and pivoting (p). for relevant NISQ algorithms
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is applied, allowing for single and two qubit gate target reduction.
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Agent

Additional details
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(a) Distribution of the difference in two qubit gates (b) Schematic overview of the actor and policy
between our trained agent and the state-of-the-art ZX-based networks.

algorithm for QCO.



