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Classically optimize a quantum circuit to approximate the time Cost function and gradient evaluation
evolution operator of a fermionic system for time At

. The deviation of the quantum circuit W{rom the reference U can be
* Treat the problem classically for short At; execute on quantum | q MPO

quantified by the normalized Frobenius norm
L=2"NMUupo —W|%=1+2"V(C-2R(Q)),

where C is the norm of the reference and () — Tr(U poW) is the

hardware for At > 1

* Use Riemannian optimization to incorporate the unitary constraint

of the quantum gates

: .. : variational part of the cost function.
 Start with fermionic swap network that implements a Trotter step P

By viewing the quantum circuit as a tensor network, the cost function

* Approximate the reference as a higher-order Trotterization and |

. : I luated by t twork contraction, and similarly, th tial
express it as a matrix product operator (MPO) is evaluated by tensor network contraction, and similarly, the partia

derivative is obtained by “cutting out” the quantum gate:

* Evaluate cost function and gradient using tensor network methods
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Quantum circuit layout and initialization o —~(F<. - - S

We consider fermionic Hamiltonians of the form
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Following the above, the Euclidean gradient is computed.

1
H =7} Tpalag+ 5 Vogipng,
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which covers systems like Fermi-Hubbard models or molecular : : . e e :
Riemannian optimization of unitary quantum gates [4]

Hamiltonians with diagonal interaction terms. o o .
The objective is to optimize the quantum gates under unitary

We initialize the model as a fermionic swap network [2], which . . . . o .
constraints using Riemannian optimization. The set of two-qubit

implements a Trotter step using a simple brickwall circuit. Each . . . .
gates forms a Riemannian manifold U with a tangent space J;,U and

orbital is represented by a qubit. By using fermionic SWAPs, all . ; . .
an inner product (X,Y)y = Tr(X'Y) associated to each point V € U.

interacting orbitals are brought next to each other once and their time . . . o
The Riemannian gradient corresponds to the projection of the

evolution is given by two-qubit gates parametrized by V,, and T,
5 Y 1 5 P Y ¥pq Pa Euclidean gradient onto the corresponding tangent space. Within

We call the quantum gates {V;} and the quantum circuit W'. , , L. , , ,
Riemannian optimization, an update step is taken into the negative

Furth , llow for additional 1 following the brickwall L . . . . .
RGOS, WE alOW 10T aCaitional [ayers IoHOWIIG the bHekwa direction of the Riemannian gradient. The resulting point needs to be

circuit design. , , ,
5 retracted from the tangent space into the manifold by, e.g., taking the

unitary part of its polar decomposition.

MPO representation of the reference

To avoid the exponential scaling of the exact time evolution operator Numerical results (preliminary)

Ui t 1ze, it 1 ful to factorize it into smaller tensor d . .
H SYSTE S126, LIS USEHL 0 factotize O SHAatlCr IENSors an The following shows the relative improvement from the initial 2

1t, e.o., MP . L C . . L
expressit, e.g., as an MPO [3] order Trotterization after the optimization when using the same circuit
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@ (N Xz d XL X layout (blue) and when allowing for an additional layer of two-qubit
ncat
N tru ,C\C;\ on I \L I gates (red) for the Fermi-Hubbard model in 1D with 60 spin orbitals.
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An optional truncation of the bond dimension y results in a lower-

rank approximation of the original MPO. In practice, we compute the

reference Uypg as a high-accuracy approximation using 4™-order 0-5 .
Trotterization and a suitable truncation (¢ = 1e — 14). '1 0.3
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