HOW NON-CLASSICAL IS A QUANTUM STATE?
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Non-classicality, defined in the sense of quantum optics, is a
resource: If a non-classical state is mixed with vacuum in a
beamsplitter, the resulting state will be entangled. Hence,
quantifying the non-classicality of a quantum state is crucial to
gauge its potential for quantum advantage in an experiment, for
instance in a Boson Sampler. However, academic non-classicali-
ty measures fail as a practical tool for experimentalists.

Here, we implement a data-based, devise-specific approach
which quantifies the non-classicality of a state by the ability of a
neural network to distinguish the state from a classical one. In
this approach, snapshots from photon-number measurements
are input to a permutation invariant Vision-Transformer [1].

In the past, it was shown that a simple model can be trained to
identify a single mode state’s non-classicality based on its
photon-number statistics [2].

CLASSICAL STATES

Classical states are defined as those with a non-negative P-
representation
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Example: Coherent state
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THE DATA

The training data consists of photon-number measurements
taken after a quantum optical circuit. Input states are classical
(coherent and thermal) as well as non-classical (Fock, cat,
squeezed, and photon-added thermal) states. For each input, ¥
snapshots are taken.

Here, we choose U to be the identity. This might sound trivial at
first, but in fact, passive linear transformations, like beam-
splitter and phase shifters, correspond to free operations that
do not alter the non-classicality of a quantum state.

[%0) — —E |

G 1) [7 @ } Fock number

measurements
| 7~rbz> | _E ]

Key to the parameter-efficient architecture is a preprocessing of
the data: The M snapshots are split into sets of N snapshots.
The model will then be trained to learn correlations within these

sets x;.

permutation invariant sets of
snapshots snapshots
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RESULTS

As loss function, we use the binary cross entropy with a weighted L1-Norm, forcing the model to focus on the correct prediction of
classical input states. Here Y is the model's prediction and € {0, 1} is the correct label:
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Fig. 1: Higher A yields more confident predictions. But: For low A, the accuracy is still high (>80%) indicating that the samples are
correlated.

Fig. 2: A is not a reliable tool to drive the model’s bias towards classical states. Note that vacuum is the only Fock state that is non-

classical, hence difficult to learn for the model. However, this problem might be lifted when training on snapshots resulting from a non-
trivial unitary.
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Average prediction for a classical state against the number N/ of snapshots in a set. A=1 for all points. True-Positive-Rate (TPR, correctly classified classical states) against False-Positive-Rate (FPR, wrongly

classified non-classical states) for different choices of L. /=50 for all points.

OUTLOOK

Make it realistic:

The model is able to correctly learn the labels of product states. The next step is to implement a non-trivial unitary that will generate
quantum correlations within the output state. It would be interesting to see whether this facilitates or challenges the correct
classification of non-classical states. Further, the model can be trained on lossy data.

Make it experimental:

An experimental device can be interpreted as a black-box that inherently includes some loss. Even if the input state is noise-free, its non
-classicality will be altered by the device. Hence, the only non-classicality label we can confidently predict is the label of classical
states. The procedure would then be to:

1. Train the model on experimentally measured classical data (to learn the noise of the device) and non-classical simulated data

2. Give the model snapshots of an unknown non-classical state

3. Model's deviation of average non-classical prediction learned in 1. then gives measure of how non-classical the input state is
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