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Neural quantum states (NQS) have gained significant interest due to their representational 
power and potential to rival state-of-the-art numerical techniques, especially for large, two-
dimensional quantum systems [1]. This study uses recurrent neural network (RNN) wave 
functions to model quantum many-body systems [2]. Specifically, we employ a 2D 
tensorized gated RNN to explore the bosonic Hofstadter model with a variable Hilbert 
space cut-off and long-range interactions. Benchmarking the RNN-NQS for the Hofstadter-
Bose-Hubbard (HBH) Hamiltonian, we find that it efficiently captures most ground state 
properties. We further analyze a more challenging Hofstadter model with long-range 
interactions, which describes Rydberg-dressed atoms subject to a synthetic magnetic field. 
Studying systems up to  sites, we identify a bubble and Wigner crystal phase in 
addition to the HBH-regime. Here, the bubble crystal phase offers a starting point for the 
search of clustered liquid phases with potentially non-Abelian anyon excitations. This work 
demonstrates that NQS is an efficient, reliable tool for simulating complex quantum 
systems with the ability to simulate long-range interactions.
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Introduction
We use a 2D tensorized gated RNN structure that allows to sample directly from the wave 
function [2][3]. The wave function is defined as follows:

,

with  and .

To obtain the conditional probability  and the phase , the local 
hidden state of the RNN is interpreted by linear layers with softsign and softmax activation 
functions.

|Ψ⟩ = ∑
n

ψλ(n) |n⟩ = ∑
n

eiϕλ(n) Pλ(n) |n⟩

Pλ(n) = ∏
i

pλ(ni |nj<i) Φλ(n) = ∑
i

ϕλ(ni |nj<i)

pλ(ni |nj<i) ϕλ(ni |nj<i)

NQS-Model

So far, only systems with a naturally restricted 
local Hilbert space where studied with auto-
regressive NQS. To apply this algorithm to 
bosonic systems, a cut-off has to be introduced.

The 2D RNN structure is designed to prevent 
a numerical separation of neighboring sites.
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To benchmark the NQS we apply the algorithm to the paradigmatic Hofstadter model with 
on-site interactions [4]:

.

Ĥ = − t∑
x,y

( ̂a†
x+1,y ̂ax,y + h . c.) − t∑

x,y

( ̂a†
x,y+1 ̂ax,yei2παx + h . c.)

+
U
2 ∑

x,y

̂nx,y( ̂nx,y − 1)

Hofstadter-Bose-Hubbard Model
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The overlap with exact states offers insights into 
the trained RNN-NQS. At lower  values, the 
NQS achieves a perfect ground state overlap, 
but as  increases, contributions from other 
low-energy states grow.

α

α

The RNN-NQS obtains reliable estimations for observables in the smaller system.  For the 
larger system, its results closely match the benchmark method, except for  values close to 

the topologically ordered Laughlin state ( ). Note that MPS ( ) 

has a comparable number of variational parameters to the NQS, while performing worse.
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χ = 32

While most interactions in nature are long-ranged, accurately representing them in 
numerical simulations can be quite challenging. In this work, we demonstrate that NQS can 
efficiently model long-range interactions by presenting results for a system of Rydberg-
dressed atoms in a magnetic field, which potentially hosts non-Abelian fractional quantum 
Hall states [5].
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Hofstadter Model with Long-Range Interactions

While the overall energy error for the considered  system is only marginally affected 
by the change of interactions, the ground state overlap improved significantly in most 
cases.

6 × 6

Furthermore, we investigated the phases 
of a  lattice system that can be 
feasible for cold atom experiments, while 
providing access to novel phases. 
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Scheme for the evaluation of the wave 
function with RNNs [2].

Examples for a bubble crystal (left) and a Wigner crystal (right).

RNN-NQS in FQH Systems: We successfully simulated fractional quantum Hall systems 
with RNN-NQS, which accurately captured most ground state properties on both  and 

 lattices.

Phase Diagram Findings: In addition to the Hofstadter-Bose-Hubbard regime, we 
identified a Wigner crystal and bubble crystal phase in the Hofstadter model with long-
range interactions.
NQS Benefits: Efficient for systems with long-range interactions and high local 
occupations, complementing traditional methods specialized for short-range interactions.
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Conclusion


