Phase Transitions in Quantum Games
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For each bond ¢ € [1, N — 1]

we compute the MOt ivat ion

entanglement entropy
S(i) = —Tr[p' log p'] e Random quantum circuits display interesting and universal behaviours,

providing a simple tool to probe complex quantum dynamics

Game set-up

Two agents playing agailnst each other 1

e Game-like settings are highly tunable setups that reveal new and intriguing
physical phenomena
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Entangler
plays with probability 1 — p
1) selects randomly a bond ¢ € [1, N — 1], e Entanglement transitions, from area-law to volume-law steady states, have
2) samples a Clifford gate g € Co, been observed in both mesurement-doped circuits®, but most recently also
3) acts with g on ¢th bond. A in unitary gates circuits!

e The degree and nature of accessible information significantly impact the
physics, allowing us to modify entanglement transitions

Disentangler
plays with probability p
1) selects a bond ¢ € [1, N — 1] with policy,
2) chooses optimally disentangling Clifford gate g*
3) acts with ¢* on ith bond.

policy € { random, greedy, RL }

At each time step
Disentangler or Entangler
plays according to p

complete information

Clifford group C,,: the group of unitaries that normalize the Pauli group (n = # qubits)

—eev@) P =P e p
Cpr:={ceUQ2")|cPc! =Pn} Pauli group P, := {€010,...0n},
with a € {1,-1,4,—},0;, € {I,X,Y, Z}

The elements of C,, are called Clifford gates,

and are generated by Hadamard (H), Phase (S) and CNOT gates. H— % (} 11)
2 —

Why Clifford circuits??? g (1 0)
The Gottesman-Knill theorem ensures that 0 7
any Clifford circuit can be simulated on a

classical machine in time poly(n).

— Can simulate larger system sizes and

get closer to the thermodynamic limit
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idea: describe state |¢) with its stabilizers instead of the amplitudes.

unitary operator s.t. s; [1)) = |1)
— stabilizer group Stab(|1))

Example
( i1 ... TIN | 211 ... ZIN \ State: |[¢) = |11)
T21 ... T2N | %21 ... 22N stabilized by II, ZI1,1Z, ZZ | o%®
Tableau7 = | . | = . , : : : : %

.

. . . . . . . O 1 0 { o-—-"0@-—-—"0-=-0===0 =@ =m~:ﬁ‘silw:-v--~
SN | K N1 ... TNN ... ZNN ) = tableau 0 0 1 0.1 0.2 0.3 0.4 0.5 0.6
since Stab(|)) C P P

can decompose each s; on Apply H: X - Z, 7 — X
{X1,... XN, Z1,.., ZN}

policy: select bond ¢ randomly policy: select bond ¢ greedily — bond that maximally disentangles across all ¢

— divergence of fluctuations at the critical point suggests p. ~ 0.38 — divergence of fluctuations at the critical point suggests p. ~ 0.15

Entanglement: S(A) = |A| — log, [Sa| for bipartition A, B and — entanglement has a value <1 for p # 0

Sa group of stabilizers acting on A
The subgroup Sa has period two, and therefore log, |Sa| € Z°T

1 0lo o0 — dicontinuous phase transition between a volume law and an area law phase — continuous phase transition
:>tab1eau(0 1‘0 0)

The amount of information available to the Disentanger changes the
dynamical properties of the system!

Reinforcement Learning RL application

A ge Ilt E nVlI' onie ﬂt . Reward Average episode length

policy 7(a|s) = Pr(A; = a|Sy = s) state s € S The greedy strategy is close (but not equal) to the optimal strategy.
state s; € S

A/reward r = Ra(Stm

The dynamics of the system is similar in both cases: RL and greedy.

p(Ser1lat, s¢) | A What is the optimal policy with less information?
St —  Stt1 N ‘ . . . L . . less information means not all rows of 7 are available.
Policy loss Value loss There is no straightforward way of generalizing the greedy strategy

W — RL is the right tool for this

Is complete information necessary to choose optimal local actions?
Is there a minimum amount of information s.t. an optimal action can be
taken?

10 | ' 10
Steps / 100M Steps / 100M

state space S = T

action space A = bonds Trained at p = 0.15 ~ pe:

= = -S>V S
@\%‘Yzztﬁi// =9 reward r = —) ;= 5(1) e The RL algorihtm converges at a different strategy
7 >}
5 e The RL policy outperforms the greedy policy for p > peritical
e
e 2 . maximally
///"‘;i’ff'} /§§w{\i — , Reward Average episode length 1
Zzéé‘i;‘}%\i& actions ' ] entangled 4P >
Z probability p
° ° ° ° ° 4 \\\\\ —600 1 975 A
Proximal PO-Llcy Opt imization (PPO) L0s] N . We expect two possible scenarios:
PPO is a stable, efficient, on-policy, actor-critic algorithm. Z \\.\ Policy loss Value loss e jump from greedy-like to random-like
0.4 1 N —+0.0055
1. Data collection 2. Compute Rewards and Advantages S -10.0060 - WMM 0.4- e continous transformation from greedy-like to random-like
. T *e. |
Unroll policy mg(als) for t =0,... T -1 —5  Ri=) 1, Veretk 02 S, -0.0065
collect trajectories 7 = {(s,a,r)} Ay =0 (YNF (e + YV (5041) — V(sy)) e o-0.0070 -
—+0.0075 1
T 00 0.1 0.2 0.3 0.4 0.5 0 10 20 0 10 20
¢ D Steps / 100M Steps / 100M
. 3. Policy Update Trained at p = 0.1 < p.:
4. Value Function Update :
L(0) = E¢lclip(r:(0),1 — €,1 + €) A¢] . .
Lvalve(g) = By [(R; — V¢(3t))2] < N (0) o (ar]se) e The discrepancy between RL and greedy policy is smaller for p < p.
A where r =
Update ¢ minimizing Lv3"¢(¢) P o (adlse) L. .
Update 6 (i.e. policy) minimizing L(6) e Suggests greedy policy is optimal for p < p.
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Phase Transitions in Quantum Games °

Two agents against each other, each following a policy:
random, greedy, RL

— who will win, and why? Find out at my poster :)
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