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If the average reward-rate, 0, is also learned,
prior SOTA (SAC, SQL) can be extended to the
average-reward framework!

* EXxpands average rewards lite

rature,

especially for deep value-based methods
* We prove PI+PE+convergence of our algo’s

* Usefulin physical systems!
» v is usually non-physical (g
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* Using known value-based technigues from DQN/SQL/SAC; we demonstrate that
the average-reward objective is viable

* The average reward objective is superior to discounting for continuing tasks and
can be a competitive algorithm!

* QOutperforms the current SOTA for average reward (arDDPG) on several tasks

Theory

We prove policy improvement (Pl) in this
setting using free energy minimization:

Theorem 1 (ERAR Policy Improvement). Let a pol-
icy w absolutely continuous w.r.t. wg and its corre-
sponding differential value Q)7 (s, a) be given. Then,
the policy
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achieves a greater entropy-regularized reward-rate.

That is, 0™ > 0, with equality only at convergence,
when ' = 7 = 7%,
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And exactly characterize the gap between
consecutive “improved” policies:

Lemma 2 (ERAR Rate Gap). Consider two policies
7,7 absolutely continuous w.r.t. wy. Then the gap
between their corresponding entropy-regularized re-
ward rates is:
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where A7 (s,a) = QF(s,a) — V;(s) is the advan-
tage function of policy m and d is the steady-state
distribution induced by 7’

Also offer algo for un-regularized objective:

Algorithm 2 Posterior Policy Iteration (PPI)

Initialize: Prior policy g, f > 0, solve budget.
while N < solve budget do
1ty < Solve(ry, B)
end while
Output: Deterministic optimal policy 7%, = mg

B

Discussion

Deep RL with average-reward objective works!

* First work to combine average-reward & entropy-regularized objectives
* Proved convergence regarding policy evaluation / policy improvement
* Applications to physical problems with time homogeneity

* We also developed successful approaches for un-regularized problem

» Posterior policy iteration updates the prior policy my < @™ to achieve zero entropic cost SCAN FOR MORE




	Slide 1

