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ing its applicability for even three-qubit processes, which
may require several hours of computation [44]. A five-
qubit process, or a CV process with a larger cuto↵ on
the Hilbert space than used in existing methods [38, 39],
may thus become impractical with larger Choi matrices
and more data.

Projected-gradient methods [41] like PLS [42] first ob-
tain an estimate for the process and then project it
to the nearest CPTP estimate. The PLS method is
fast: it can reconstruct processes for 5–7 qubits in a
reasonable amount of time [42]. However, projection-
based techniques may require finding an initial analytical
least-squares estimate relying on an informationally com-
plete set of measurements, along with costly projection
steps involving eigendecompositions of large Choi matri-
ces or iterative subroutines. Our approach avoids these
problems while still being able to handle relatively large
Hilbert space dimensions.

We show that the simple GD-QPT technique yields
similar performances as CS and PLS on benchmarks us-
ing random processes with Gaussian noise in the data.
We also assess the performance of GD-QPT and CS
against the amount of data, to show that GD-QPT com-
bines the best of two worlds. Like CS, the GD-QPT ap-
proach works with a less than informationally complete
set of measurements, but it can still, like PLS, be run for
larger problems.

As an extension to GD-QPT, we also try out neural-
network QPT (NN-QPT) [73]. In NN-QPT, the Kraus
operators are given by the output of a neural network,
similar to ideas explored in previous works [74, 75] for
QST. We find no significant advantage of this approach
compared to GD-QPT, which indicates that a good pro-
cess representation, along with constrained GD optimiza-
tion, might be su�cient to learn quantum states and
processes. Our approach thus introduces a flexible QPT
technique, demonstrating that simple gradient-based op-
timization combined with appropriate regularization and
e�cient process representation can become an e↵ective
tool for quantum process characterization.

Kraus and Choi representations. The Kraus-operator
representation of E corresponds to k complex-valued ma-
trices {Kl} of dimension N ◊ N , that act on a den-

sity matrix fl as E(fl) =
q

k

l=1 KlflKl
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Õ. Here N

is the Hilbert-space dimension; for n qubits N = 2n.
The Kraus representation guarantees that the process is
CP [65, 76, 77]. The TP condition translates to the Kraus

operators satisfying
q
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The Choi representation [48, 78] of E is a single N
2 ◊

N
2 complex-valued matrix � that can be written using

Kraus operators as � =
q

k

l=1 |KlÍÈKl| with |KlÍ = (I ¢
Kl)
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i
|iÍ¢|iÍ. The Choi matrix is thus a linear operator

acting on the tensor product of the input and output
Hilbert spaces Hin ¢ Hout. The action of � on a state fl

is given by the partial trace operation fl
Õ = TrHin [(flT ¢
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Figure 1. An illustration of GD-QPT. In QPT, we estimate
a quantum process E from data dij that represent expecta-
tion values of measurements Mj on states given by E act-
ing on probes fli. We construct a loss function L using the
data and our estimate for the process as a set of Kraus op-
erators stacked together, K. We estimate K by minimizing
the loss with GD-based optimization using batches of data.
The Kraus form guarantees that the estimate is CP and a
gradient-retraction technique restricts each GD update such
that K remains in the set of orthonormal matrices on the
Stiefel manifold, ensuring that it is also TP.

I)�]. In order for � to be CPTP, it should be positive-
semidefinite [41, 48] and satisfy TrHout(�) = I.

In our approach to QPT, we consider the Kraus-
operator form because it allows us to control the size
of the process representation. The Choi rank r of a pro-
cess is given by the minimum number of Kraus operators
necessary to represent the process. The maximum Choi
rank is r = N

2, but in realistic cases, process matri-
ces can have low ranks r π N

2 (for a unitary process,
r = 1). Our approach thus gives the flexibility to choose
the rank r = k (the number of Kraus operators) of the
process ansatz, allowing us to obtain low-rank approx-
imations without constructing the full Choi matrix. In
most previous QPT methods, the Choi-matrix represen-
tation was preferred because it made CPTP constraints
easier to handle [41] and the problem could be cast in a
linear form [44].
Learning quantum process representations. We illus-

trate the idea of GD-QPT in Fig. 1. In QPT experi-
ments, data dij are obtained as estimates (computed by
averaging single-shot outcomes) of expectation values of
measurements Mj on the output states fl

Õ
i

= E(fli) for
given probe (input) states fli. We model statistical errors
in the measurement as noise sampled from a zero-mean
Gaussian distribution N (0, ‘) with standard deviation ‘.
The process-reconstruction problem can then be cast as a
learning task: minimizing a loss function L representing
the discrepancy between the data dij and our estimate of
the process. We use

L(K) =
ÿ

ij

C
dij ≠ Tr

C
Mj

A
ÿ

k

KkfliKk
†

BDD2

+ ⁄||K||1,

(1)

describing how well the generated measurement statistics
match the data. This partitioning of the evaluation of the
generated statistics is inspired by the PATCHGANarchitecture
of Ref. [76]. If the generator has managed to learn the correct
density matrix, the discriminator will not be able to distin-
guish the generated statistics from the true data.
The adaption of the CGAN architecture to QST

requires us to introduce two custom layers at the
end of the generator neural network. First, we add a
“DensityMatrix” layer, which takes the unconstrained
intermediate output of the generator, molds it into a lower
triangular complex-valued matrix TG with real entries on
the diagonal, constructs T†

GTG, and normalizes the resulting
matrix to have unit trace. This method is inspired by the
Cholesky decomposition [40]. It ensures that the output ρG
is a valid density matrix: Hermitian, positive, and having
unit trace. A similar idea was found independently
in Ref. [73].
Second, we add an “Expectation” layer that combines the

output ρG with the given measurement operators fOig to
compute the generated measurement statistics for each
measurement outcome as trðOiρGÞ. These two custom
layers do not have any trainable parameters. They are only
present to enforce the rules of quantum mechanics in the
neural networks. This is akin to regularization [95] and
normalization [96] in neural networks. We note that our two
custom layers could be used to augment any deep-learning
neural-network architecture for QST, e.g., Refs. [72,73].
We train the QST-CGAN using standard gradient-based

optimization techniques, e.g., Adam [97] with learning-rate
scheduling, starting from random initial values for the
parameters ðθD; θGÞ. In this way, data from one experiment
can be used to estimate the density matrix of the state in
that experiment. However, when reconstructing ρ from
another experiment, the QST-CGAN must start from
zero again. We can avoid this reset by pretraining on
simulated data corresponding to the type of state(s) and
noise that is expected to be present in the experiment. The

reconstruction from experimental data then requires less
additional training; it even becomes possible to do “single-
shot reconstruction” with a single evaluation by the
pretrained generator.
We note that adding L1 loss to Eq. (2) as suggested in

Ref. [76] proved helpful in training the QST-CGAN [89]
and was used for all results displayed below, but was not
necessary to obtain good results. Similarly, adding a
gradient penalty [98] to Eq. (1) improved results for
single-shot reconstruction.
Benchmarking CGAN quantum state tomography.—To

benchmark the QST-CGAN method, we test it on
reconstruction of optical quantum states and compare its
performance to two MLE methods—iterative MLE (iMLE)
[41] and accelerated projected-gradient-based MLE (APG-
MLE) [94]. In iMLE, projection operators determined by
the measurement statistics are iteratively applied to a
random initial density matrix until convergence. The final
result is an estimated density matrix ρ0 that maximizes the
likelihood function Lðρ0jdÞ. In the APG-MLE method,
ideas from convex optimization are used to enable faster
convergence.
Optical quantum states describe quantized single-mode

electromagnetic fields (harmonic oscillators). Our choice of
optical quantum states for testing the QST-CGAN was
motivated by the existence of visual representations, e.g.,
Wigner functions [99], for these states, seeing how CGANs
have mainly been applied to image processing. However,
we stress that the QST-CGAN approach is general and can
be applied to any type of quantum system with any type of
observable [89].
Some of the common observables for optical quantum

states are instances of a displace-and-measure technique. For
example, the photon-number distribution obtained after
applying a displacement β is the generalized Q function
[100]:Qβ

n ¼ tr½jnihnjDð−βÞρD†ð−βÞ%, where jni is theFock
state with n photons, DðβÞ ¼ eβa

†−β&a is the displacement
operator, and aða†Þ is the bosonic creation (annihilation)
operator of the electromagneticmode.TheHusimiQ function
(photon field quadratures) is ð1=πÞQβ

0 and the Wigner
function (photon parity) is WðβÞ ¼ ð2=πÞ

P
nð−1ÞnQ

β
n.

The measurement data we consider in the following are
samples ofQβ

0 andWðβÞ at certain β, as illustrated in Fig. 2.
A state ρ in a truncated Hilbert space with size N is

specified by up to N2 − 1 real numbers [93,101] (we use
N ¼ 32). Thus, in general, informational completeness
requires displacements and measurements to be carried
out such that d has at least N2 − 1 elements. However, note
that the required number of elements in d for reconstruction
can be lower, ∝rN, if ρ has low rank r [102].
Results.—In Fig. 3(a), we compare the reconstruction

fidelity for the QST-CGAN and MLE methods as a
function of the number of iterations. One iteration is one
update of all the weights ðθD; θGÞ for the QST-CGAN

FIG. 1. Illustration of the CGAN architecture for QST. Data d
sampled from measurements of a set of measurement operators
fOig on a quantum state is fed into both the generator G and the
discriminator D. The other input to D is the generated statistics
from G. The next to last layer of G outputs a physical density
matrix and the last layer computes measurement statistics using
this density matrix. The discriminator compares the measurement
data and the generated data for each measurement operator and
outputs a probability that they match.
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Quantum state tomography
2 Introduction
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Figure 1.1: Many tasks in quantum information and computing can be framed
as parameter estimation or inverse problems. (a) Inverse problems deal with
estimating parameters from observed data that are related by a forward model.
In most cases, due to noise, inverse parameter estimation problems are ill-posed
and regularization methods are necessary to solve them. Prior information can
be used to reduce the search space for parameters and constraint the problem to
tackle ill-posedness. (b) Machine learning could o↵er an alternative automated
procedure for parameter estimation or prediction of quantities of interest directly
from data. (c) A neural network can take measurement data from a quantum
system as input and then either generate a state description or directly predict
properties of the state. Learning from data could help tackle some of the di�cult
inverse problems arising in the area of quantum information and computing.

speed up and enhance machine learning [21] while the latter can be applied
to solve various problems in quantum physics [22]. In this thesis, we will
discuss the latter and show how to apply neural-network-based machine
learning to the problem of quantum state characterization.

Machine-learning-based techniques were recently shown to be promising
for several problems in quantum information, e.g., faster tuning of quantum
devices compared to human experts [23], designing of quantum experi-
ments [24, 25], automated calibration, control & characterization [26, 27]
and decreasing error rates for qubit readout [28]. Some of the most success-
ful machine-learning techniques today use neural networks [29]. Therefore
neural networks have also been applied to problems in quantum physics
with some success [22, 30, 31]. Let us start by elucidating the relationship
between quantum state characterization, machine learning, and the general
idea of parameter estimation in inverse problems, see Fig. 1.1.

Quantum state tomography is a tricky inverse problem,
important for many experiments

• Many parameters (         ) in the density matrix to determine
• A lot of measurement data required
• Calculations can be time-consuming
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Figure 2. A binomial(S = 2, N = 5, µ = 0) state and data generated from a displace-and-measure calculation using QuTiP [149,
150] within a 200 ◊ 200 grid. (a) The photon occupation probabilities, i.e., the diagonal elements of the density matrix fl. (b)
A Hinton plot of fl, where blue (red) denotes that the real part of the density-matrix element is positive (negative). The size
and the shade of each square is determined by the absolute value of the density-matrix element. (c, d, e) The generalized Q
function, Q—

n, for n = 0, 1, 2. (f) The corresponding Wigner function computed using the di↵erent Q—
n as (2/fi)

q
n

(≠1)nQ—
n.

Note that even when choosing a Hilbert-space cuto↵ of 100 for this demonstration, the corners in the Wigner-function plot have
spurious non-zero values at large displacements — ¥ ±5 ± 5i. To mitigate such e↵ects, larger cuto↵s are required for states that
have a high photon number or we need to restrict the computation to smaller values of —. Other methods of computing the
Wigner function from fl do not su↵er such problems even with a cuto↵ of 16 for this specific example. QuTiP provides several
such implementations and we use one of them, the numerically stable Clenshaw method, to compute Wigner functions in the
rest of the paper.

Figure 3. Representative examples from each class of optical quantum states considered in this paper. In the top row, we
plot the Wigner function for the states, using the same scaling as Fig. 2(f). In the bottom row, we show the values of the
density-matrix elements for each state as Hinton plots similar to Fig. 2(b). We can see that the Wigner functions and density
matrices have characteristic patterns that a neural network can learn and use for classification or reconstruction.

the reduced detection e�ciency ÷ = 1/(1+nth). We con-
sider such noise during reconstruction tasks by allowing
it as an input which is easily estimated in experiments,
e.g., the detector e�ciency or thermal photons in the
amplification channel.

3. Photon loss

If the optical quantum state is created in a lossy res-
onator, photons may leak out from this resonator before
the measurement of the state is completed. We model
such photon loss [see Fig. 4(c)] by letting the original
state evolve for some time · according to the master
equation

fl̇ = ≠
i

~ [H, fl] + “L[a]fl, (41)

where H = ~Êa†a is the free resonator Hamiltonian, Ê
is the resonator frequency, “ is the photon loss rate, and
L[a]fl = afla†

≠
1
2 a†afl ≠

1
2 fla†a. Similar to the case of

mixed states in Sec. III C 1, in the classification task, the
correct label is defined to be that of the class that fl(t = 0)
belongs to, while in the reconstruction task, such a noise
is not necessarily an error as the aim is to reconstruct
fl(t = ·).

4. A�ne transformations

An a�ne transformation is a geometric transforma-
tion that can be represented as a composition of a lin-
ear transformation and a translation. In two-dimensional
(2D) images, it preserves lines and parallelism, but allows
for e↵ects such as rotations, displacements, reflections,
scaling, and shearing. Our motivation for this type of
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Generative adversarial networks

https://naokishibuya.medium.com/understanding-generative-adversarial-networks-4dafc963f2ef

Duelling networks train to generate plausible fake data 
and to distinguish it from real data



Conditional generative adversarial networks

Increased control over the output from a GAN 
by conditioning on some variable

AttGAN (arXiv:1711.10678)
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Calculation time and measurement data
Comparing to standard methods based on maximum-likelihood estimation (MLE):
iterative MLE (iMLE) and accelerated projected-gradient-based MLE (APG-MLE)

Cat state with 2 photons,
32x32 grid of Husimi Q data

4

Figure 3. QST-CGAN performance. The data is the Husimi
Q function of the cat state in Fig. 2(b). (a) Reconstruction fi-

delity F (fl, flÕ) = tr
!Ô

flflÕÔfl
"2

as a function of iterations for
the QST-CGAN (red), iMLE (blue), and APG-MLE (dashed
black). We use 1024 displacements — in a 32 ◊ 32 grid. The
weights of the QST-CGAN and the starting density matrix of
the iMLE are randomly initialized. The APG-MLE runs 13 it-
erations of conjugate-gradient line search from the maximally
mixed state before switching to APG. The solid lines show
the mean F for 100 runs; the shaded areas show one standard
deviation from the mean. (b) Average F as a function of the
number of —. For each number, 10 sets of displacements are
randomly selected from within a disk with |—| Æ 5 for the
state in Fig. 2. We show the average F reached after 1000
iterations for QST-CGAN and iMLE, and 10, 000 iterations
for APG-MLE.

matrix for APG-MLE. We find that the QST-CGAN con-
verges to a fidelity > 0.999 in about two orders of magni-
tude fewer iterations than the MLE methods. Note that
the choice of network architecture and training parame-
ters will a↵ect the speed of convergence and the compu-
tational cost of one iteration for the QST-CGAN.

Next, we investigate, in Fig. 3(b), how many data
points are required as input to reach high reconstruc-
tion fidelity. We find that the QST-CGAN approach
starts outperforming the MLE methods around N = 32
data points and reaches fidelities close to unity already
with < 100 data points, while the MLE methods require
≥ 1000 data points to attain good fidelity (an RBM-
based reconstruction of a similar state also requires thou-
sands of data points to reach high fidelity [68]). Note that
the rank r = 1, since fl is a pure state.

Experimental state reconstruction from parity measure-
ments. The benchmarking of the QST-CGAN so far
has been on simulated data. We now demonstrate, in
Fig. 4, that our QST-CGAN can reconstruct a noisy
state from experimental data. In this particular exper-
iment, a superconducting transmon qubit was used to
generate a Wigner-negative state in a resonator [103], by
applying a selective number-dependent arbitrary phase
(SNAP) [104, 105] of fi to |0Í and |1Í of a coherent
state |– = 1Í. Despite significant state-preparation-and-
measurement (SPAM) noise, the QST-CGAN still man-
ages to reconstruct the data well from measurements of
the Wigner function, even when using only ≥ 15 % of the
measurement data.

Figure 4. (a) Reconstruction of a Wigner-negative bino-
mial [89] state by a QST-CGAN from (b) noisy experimental
data. Inset: the target state. The reconstruction uses 4281
data points of the Wigner function measured for — inside the
dashed circle. The data outside the circle, e.g., the Wigner-
negative region in the top left, is not as reliable due to mea-
surement calibration problems at higher photon numbers. We
also attempt reconstruction with a subset of the data points
inside the circle, and find that ≥ 600 data points are enough
to achieve a fidelity ≥ 0.9 with the full reconstruction.

Figure 5. Single-shot reconstructions of 200 cat states
(cf. Fig. 2, |–| œ [1, 3], up to six coherent states in superpo-
sition), using a pre-trained QST-CGAN. (a) Fidelity distri-
bution of the reconstructions after training on a 32 ◊ 32 grid
of data points. (b) Average fidelity (solid line) within one
standard deviation (shaded region) after further iterations.

Single-shot reconstruction with pre-training. We now
pre-train the QST-CGAN on a data set with several thou-
sand cat states similar to Fig. 2 by selecting |–| œ [1, 3]
randomly with up to six coherent states in superposition.
As shown in Fig. 5(a), this pre-trained network is then
able to perform single-shot reconstructions for di↵erent
cat states with a high average fidelity ≥ 0.98. It turned
out to be di�cult to find a learning strategy enabling
further improvement of the fidelity with just a few more
iterations for each state, but with tens of iterations a clear
improvement is observed [Fig. 2(b)]. The pre-trained net-
work thus does not have to iterate many times from an
initial random guess for each state, as is the case for the
results in Fig. 3 and most other reconstruction methods
in use today, resulting in a four orders of magnitude faster
reconstruction than in Fig. 3(a).
Conclusion and outlook. In this Letter, we have

adapted the CGAN architecture for use in quantum state
tomography. The adaption relies on the introduction

The QST-CGAN converges to high fidelity using much 
fewer iterations and much less measurement data
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of numbers describing how well the generated measure-
ment statistics match the data. This partitioning of the
evaluation of the generated statistics is inspired by the
PatchGAN architecture of Ref. [76]. If the generator has
managed to learn the correct density matrix, the dis-
criminator will not be able to distinguish the generated
statistics from the true data.

The adaption of the CGAN architecture to QST re-
quires us to introduce two custom layers at the end of
the generator neural network. First, we add a Density-
Matrix layer, which takes the unconstrained intermediate
output of the generator, moulds it into a lower triangu-
lar complex-valued matrix TG with real entries on the
diagonal, constructs T †

GTG, and normalizes the resulting
matrix to have unit trace. This method is inspired by the
Cholesky decomposition [40]. It ensures that the output
flG is a valid density matrix: Hermitian, positive, and
having unit trace. A similar idea was found indepen-
dently in Ref. [73].

Secondly, we add an Expectation layer that combines
the output flG with the given measurement operators
{Oi} to compute the generated measurement statistics
for each measurement outcome as tr(OiflG). These two
custom layers do not have any trainable parameters.
They are only present to enforce the rules of quantum
mechanics in the neural networks. This is akin to regu-
larization [95] and normalization [96] in neural networks.
We note that our two custom layers could be used to
augment any deep-learning neural-network architecture
for QST, e.g., Refs. [72, 73].

We train the QST-CGAN using standard gradient-
based optimization techniques, e.g., Adam [97] with
learning-rate scheduling, starting from random initial
values for the parameters (◊D, ◊G). In this way, data from
one experiment can be used to estimate the density ma-
trix of the state in that experiment. However, when re-
constructing fl from another experiment, the QST-CGAN
must start from zero again. We can avoid this reset by
pre-training on simulated data corresponding to the type
of state(s) and noise that is expected to be present in
the experiment. The reconstruction from experimental
data then requires less additional training; it even be-
comes possible to do single-shot reconstruction with a
single evaluation by the pre-trained generator.

We note that adding L1 loss to Eq. (2) as suggested in
Ref. [76] proved helpful in training the QST-CGAN [89],
and was used for all results displayed below, but was
not necessary to obtain good results. Similarly, adding
a gradient penalty [98] to Eq. (1) improved results for
single-shot reconstruction.

Benchmarking CGAN quantum state tomography. To
benchmark the QST-CGAN method, we test it on re-
construction of optical quantum states and compare its
performance to two MLE methods — iterative MLE
(iMLE) [41] and accelerated projected-gradient-based
MLE (APG-MLE) [94]. In iMLE, projection operators

Figure 2. Observables for an optical quantum state, the “cat
state” |–Í + |≠–Í (up to a normalization), with coherent am-
plitude – = 2. (a) The Wigner function. (b) The Husimi Q
function. The stars mark specific — used to sample the data
used as input to the QST-CGAN.

determined by the measurement statistics are iteratively
applied to a random initial density matrix until conver-
gence. The final result is an estimated density matrix flÕ

that maximizes the likelihood function L(flÕ
|d). In the

APG-MLE method, ideas from convex optimization are
used to enable faster convergence.
Optical quantum states describe quantized single-

mode electromagnetic fields (harmonic oscillators). Our
choice of optical quantum states for testing the QST-
CGAN was motivated by the existence of visual repre-
sentations, e.g., Wigner functions [99], for these states,
seeing how CGANs have mainly been applied to image
processing. However, we stress that the QST-CGAN ap-
proach is general and can be applied to any type of quan-
tum system with any type of observable [89].
Some of the common observables for optical quantum

states are instances of a displace-and-measure technique.
For example, the photon-number distribution obtained
after applying a displacement — is the generalized Q
function [100]: Q—

n = tr
!
|nÍÈn|D(≠—)flD†(≠—)

"
, where

|nÍ is the Fock state with n photons, D(—) = e—a†≠—úa

is the displacement operator, and a(a†) is the bosonic
creation (annihilation) operator of the electromagnetic
mode. The Husimi Q function (photon field quadratures)
is (1/fi)Q—

0 and the Wigner function (photon parity) is
W (—) = (2/fi)

q
n(≠1)nQ—

n. The measurement data we

consider in the following are samples of Q—
0 and W (—) at

certain —, as illustrated in Fig. 2.
A state fl in a truncated Hilbert space with size N is

specified by up to N2
≠ 1 real numbers [93, 101] (we use

N = 32). Thus, in general, IC requires displacements
and measurements to be carried out such that d has at
least N2

≠ 1 elements. However, note that the required
number of elements in d for reconstruction can be lower,
Ã rN , if fl has low rank r [102].
Results. In Fig. 3(a), we compare the reconstruction

fidelity for the QST-CGAN and MLE methods as a func-
tion of the number of iterations. One iteration is one
update of all the weights (◊D, ◊G) for the QST-CGAN (a
single gradient-descent step), one application of the pro-
jection operators in iMLE, and one update of the density



Applications

”I used QST-CGAN extensively for this work. It 
was REALLY useful. Without it, all quantitative 
analysis in my manuscript would be impossible.” 
— Sangil Kwon, RIKEN, Japan 
Nature Communications 15, 86 (2024)

Made the code freely available on GitHub: quantshah/qst-cgan



Summary for QST-CGAN

We have applied conditional generative adversarial networks to the 
problem of reconstructing quantum states from measurement data

Faster reconstruction (fewer iterations), less data needed, single-shot 
reconstruction with pre-training, handling various types of noise

S. Ahmed, C. Sánchez Muñoz, F. Nori, and A. F. Kockum, Phys. Rev. Lett. 127, 140502 (2021)
S. Ahmed, C. Sánchez Muñoz, F. Nori, and A. F. Kockum, Phys. Rev. Res. 3, 033278 (2021)

Code available on GitHub: quantshah/qst-cgan
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Quantum process tomography

A quantum operation is a completely positive 
and trace-preserving (TP) linear map 
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E(fl) = flÕ
Characterizing a quantum operation is 
called quantum process tomography (QPT)

QPT requires preparing many initial states, applying the operation, 
and then measuring many different observables
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ing its applicability for even three-qubit processes, which
may require several hours of computation [44]. A five-
qubit process, or a CV process with a larger cuto↵ on
the Hilbert space than used in existing methods [38, 39],
may thus become impractical with larger Choi matrices
and more data.

Projected-gradient methods [41] like PLS [42] first ob-
tain an estimate for the process and then project it
to the nearest CPTP estimate. The PLS method is
fast: it can reconstruct processes for 5–7 qubits in a
reasonable amount of time [42]. However, projection-
based techniques may require finding an initial analytical
least-squares estimate relying on an informationally com-
plete set of measurements, along with costly projection
steps involving eigendecompositions of large Choi matri-
ces or iterative subroutines. Our approach avoids these
problems while still being able to handle relatively large
Hilbert space dimensions.

We show that the simple GD-QPT technique yields
similar performances as CS and PLS on benchmarks us-
ing random processes with Gaussian noise in the data.
We also assess the performance of GD-QPT and CS
against the amount of data, to show that GD-QPT com-
bines the best of two worlds. Like CS, the GD-QPT ap-
proach works with a less than informationally complete
set of measurements, but it can still, like PLS, be run for
larger problems.

As an extension to GD-QPT, we also try out neural-
network QPT (NN-QPT) [73]. In NN-QPT, the Kraus
operators are given by the output of a neural network,
similar to ideas explored in previous works [74, 75] for
QST. We find no significant advantage of this approach
compared to GD-QPT, which indicates that a good pro-
cess representation, along with constrained GD optimiza-
tion, might be su�cient to learn quantum states and
processes. Our approach thus introduces a flexible QPT
technique, demonstrating that simple gradient-based op-
timization combined with appropriate regularization and
e�cient process representation can become an e↵ective
tool for quantum process characterization.

Kraus and Choi representations. The Kraus-operator
representation of E corresponds to k complex-valued ma-
trices {Kl} of dimension N ◊ N , that act on a den-

sity matrix fl as E(fl) =
q

k

l=1 KlflKl
† = fl

Õ. Here N

is the Hilbert-space dimension; for n qubits N = 2n.
The Kraus representation guarantees that the process is
CP [65, 76, 77]. The TP condition translates to the Kraus

operators satisfying
q

k

l=1 K
†
l
Kl = I.

The Choi representation [48, 78] of E is a single N
2 ◊

N
2 complex-valued matrix � that can be written using

Kraus operators as � =
q

k

l=1 |KlÍÈKl| with |KlÍ = (I ¢
Kl)

q
i
|iÍ¢|iÍ. The Choi matrix is thus a linear operator

acting on the tensor product of the input and output
Hilbert spaces Hin ¢ Hout. The action of � on a state fl

is given by the partial trace operation fl
Õ = TrHin [(flT ¢
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Figure 1. An illustration of GD-QPT. In QPT, we estimate
a quantum process E from data dij that represent expecta-
tion values of measurements Mj on states given by E act-
ing on probes fli. We construct a loss function L using the
data and our estimate for the process as a set of Kraus op-
erators stacked together, K. We estimate K by minimizing
the loss with GD-based optimization using batches of data.
The Kraus form guarantees that the estimate is CP and a
gradient-retraction technique restricts each GD update such
that K remains in the set of orthonormal matrices on the
Stiefel manifold, ensuring that it is also TP.

I)�]. In order for � to be CPTP, it should be positive-
semidefinite [41, 48] and satisfy TrHout(�) = I.

In our approach to QPT, we consider the Kraus-
operator form because it allows us to control the size
of the process representation. The Choi rank r of a pro-
cess is given by the minimum number of Kraus operators
necessary to represent the process. The maximum Choi
rank is r = N

2, but in realistic cases, process matri-
ces can have low ranks r π N

2 (for a unitary process,
r = 1). Our approach thus gives the flexibility to choose
the rank r = k (the number of Kraus operators) of the
process ansatz, allowing us to obtain low-rank approx-
imations without constructing the full Choi matrix. In
most previous QPT methods, the Choi-matrix represen-
tation was preferred because it made CPTP constraints
easier to handle [41] and the problem could be cast in a
linear form [44].
Learning quantum process representations. We illus-

trate the idea of GD-QPT in Fig. 1. In QPT experi-
ments, data dij are obtained as estimates (computed by
averaging single-shot outcomes) of expectation values of
measurements Mj on the output states fl

Õ
i

= E(fli) for
given probe (input) states fli. We model statistical errors
in the measurement as noise sampled from a zero-mean
Gaussian distribution N (0, ‘) with standard deviation ‘.
The process-reconstruction problem can then be cast as a
learning task: minimizing a loss function L representing
the discrepancy between the data dij and our estimate of
the process. We use

L(K) =
ÿ

ij

C
dij ≠ Tr

C
Mj

A
ÿ

k

KkfliKk
†

BDD2

+ ⁄||K||1,

(1)

2

ing its applicability for even three-qubit processes, which
may require several hours of computation [44]. A five-
qubit process, or a CV process with a larger cuto↵ on
the Hilbert space than used in existing methods [38, 39],
may thus become impractical with larger Choi matrices
and more data.

Projected-gradient methods [41] like PLS [42] first ob-
tain an estimate for the process and then project it
to the nearest CPTP estimate. The PLS method is
fast: it can reconstruct processes for 5–7 qubits in a
reasonable amount of time [42]. However, projection-
based techniques may require finding an initial analytical
least-squares estimate relying on an informationally com-
plete set of measurements, along with costly projection
steps involving eigendecompositions of large Choi matri-
ces or iterative subroutines. Our approach avoids these
problems while still being able to handle relatively large
Hilbert space dimensions.

We show that the simple GD-QPT technique yields
similar performances as CS and PLS on benchmarks us-
ing random processes with Gaussian noise in the data.
We also assess the performance of GD-QPT and CS
against the amount of data, to show that GD-QPT com-
bines the best of two worlds. Like CS, the GD-QPT ap-
proach works with a less than informationally complete
set of measurements, but it can still, like PLS, be run for
larger problems.

As an extension to GD-QPT, we also try out neural-
network QPT (NN-QPT) [73]. In NN-QPT, the Kraus
operators are given by the output of a neural network,
similar to ideas explored in previous works [74, 75] for
QST. We find no significant advantage of this approach
compared to GD-QPT, which indicates that a good pro-
cess representation, along with constrained GD optimiza-
tion, might be su�cient to learn quantum states and
processes. Our approach thus introduces a flexible QPT
technique, demonstrating that simple gradient-based op-
timization combined with appropriate regularization and
e�cient process representation can become an e↵ective
tool for quantum process characterization.

Kraus and Choi representations. The Kraus-operator
representation of E corresponds to k complex-valued ma-
trices {Kl} of dimension N ◊ N , that act on a den-

sity matrix fl as E(fl) =
q

k

l=1 KlflKl
† = fl

Õ. Here N

is the Hilbert-space dimension; for n qubits N = 2n.
The Kraus representation guarantees that the process is
CP [65, 76, 77]. The TP condition translates to the Kraus

operators satisfying
q

k

l=1 K
†
l
Kl = I.

The Choi representation [48, 78] of E is a single N
2 ◊

N
2 complex-valued matrix � that can be written using

Kraus operators as � =
q

k

l=1 |KlÍÈKl| with |KlÍ = (I ¢
Kl)

q
i
|iÍ¢|iÍ. The Choi matrix is thus a linear operator

acting on the tensor product of the input and output
Hilbert spaces Hin ¢ Hout. The action of � on a state fl

is given by the partial trace operation fl
Õ = TrHin [(flT ¢
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Figure 1. An illustration of GD-QPT. In QPT, we estimate
a quantum process E from data dij that represent expecta-
tion values of measurements Mj on states given by E act-
ing on probes fli. We construct a loss function L using the
data and our estimate for the process as a set of Kraus op-
erators stacked together, K. We estimate K by minimizing
the loss with GD-based optimization using batches of data.
The Kraus form guarantees that the estimate is CP and a
gradient-retraction technique restricts each GD update such
that K remains in the set of orthonormal matrices on the
Stiefel manifold, ensuring that it is also TP.

I)�]. In order for � to be CPTP, it should be positive-
semidefinite [41, 48] and satisfy TrHout(�) = I.

In our approach to QPT, we consider the Kraus-
operator form because it allows us to control the size
of the process representation. The Choi rank r of a pro-
cess is given by the minimum number of Kraus operators
necessary to represent the process. The maximum Choi
rank is r = N

2, but in realistic cases, process matri-
ces can have low ranks r π N

2 (for a unitary process,
r = 1). Our approach thus gives the flexibility to choose
the rank r = k (the number of Kraus operators) of the
process ansatz, allowing us to obtain low-rank approx-
imations without constructing the full Choi matrix. In
most previous QPT methods, the Choi-matrix represen-
tation was preferred because it made CPTP constraints
easier to handle [41] and the problem could be cast in a
linear form [44].
Learning quantum process representations. We illus-

trate the idea of GD-QPT in Fig. 1. In QPT experi-
ments, data dij are obtained as estimates (computed by
averaging single-shot outcomes) of expectation values of
measurements Mj on the output states fl

Õ
i

= E(fli) for
given probe (input) states fli. We model statistical errors
in the measurement as noise sampled from a zero-mean
Gaussian distribution N (0, ‘) with standard deviation ‘.
The process-reconstruction problem can then be cast as a
learning task: minimizing a loss function L representing
the discrepancy between the data dij and our estimate of
the process. We use

L(K) =
ÿ

ij

C
dij ≠ Tr

C
Mj

A
ÿ

k

KkfliKk
†

BDD2

+ ⁄||K||1,

(1)

We use the Kraus representation

2

ing its applicability for even three-qubit processes, which
may require several hours of computation [44]. A five-
qubit process, or a CV process with a larger cuto↵ on
the Hilbert space than used in existing methods [38, 39],
may thus become impractical with larger Choi matrices
and more data.

Projected-gradient methods [41] like PLS [42] first ob-
tain an estimate for the process and then project it
to the nearest CPTP estimate. The PLS method is
fast: it can reconstruct processes for 5–7 qubits in a
reasonable amount of time [42]. However, projection-
based techniques may require finding an initial analytical
least-squares estimate relying on an informationally com-
plete set of measurements, along with costly projection
steps involving eigendecompositions of large Choi matri-
ces or iterative subroutines. Our approach avoids these
problems while still being able to handle relatively large
Hilbert space dimensions.

We show that the simple GD-QPT technique yields
similar performances as CS and PLS on benchmarks us-
ing random processes with Gaussian noise in the data.
We also assess the performance of GD-QPT and CS
against the amount of data, to show that GD-QPT com-
bines the best of two worlds. Like CS, the GD-QPT ap-
proach works with a less than informationally complete
set of measurements, but it can still, like PLS, be run for
larger problems.

As an extension to GD-QPT, we also try out neural-
network QPT (NN-QPT) [73]. In NN-QPT, the Kraus
operators are given by the output of a neural network,
similar to ideas explored in previous works [74, 75] for
QST. We find no significant advantage of this approach
compared to GD-QPT, which indicates that a good pro-
cess representation, along with constrained GD optimiza-
tion, might be su�cient to learn quantum states and
processes. Our approach thus introduces a flexible QPT
technique, demonstrating that simple gradient-based op-
timization combined with appropriate regularization and
e�cient process representation can become an e↵ective
tool for quantum process characterization.

Kraus and Choi representations. The Kraus-operator
representation of E corresponds to k complex-valued ma-
trices {Kl} of dimension N ◊ N , that act on a den-

sity matrix fl as E(fl) =
q

k

l=1 KlflKl
† = fl

Õ. Here N

is the Hilbert-space dimension; for n qubits N = 2n.
The Kraus representation guarantees that the process is
CP [65, 76, 77]. The TP condition translates to the Kraus

operators satisfying
q

k

l=1 K
†
l
Kl = I.

The Choi representation [48, 78] of E is a single N
2 ◊

N
2 complex-valued matrix � that can be written using

Kraus operators as � =
q

k

l=1 |KlÍÈKl| with |KlÍ = (I ¢
Kl)

q
i
|iÍ¢|iÍ. The Choi matrix is thus a linear operator

acting on the tensor product of the input and output
Hilbert spaces Hin ¢ Hout. The action of � on a state fl

is given by the partial trace operation fl
Õ = TrHin [(flT ¢

<latexit sha1_base64="m+9t90MFUPbYlzeyMRfNIQ8EBpE=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cK9gPbUDbbSbt0swm7G6HE/gsvHhTx6r/x5r9x2+agrQ8GHu/NMDMvSATXxnW/ncLK6tr6RnGztLW9s7tX3j9o6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0M/Vbj6g0j+W9GSfoR3QgecgZNVZ6eHJJV1E5ENgrV9yqOwNZJl5OKpCj3it/dfsxSyOUhgmqdcdzE+NnVBnOBE5K3VRjQtmIDrBjqaQRaj+bXTwhJ1bpkzBWtqQhM/X3REYjrcdRYDsjaoZ60ZuK/3md1IRXfsZlkhqUbL4oTAUxMZm+T/pcITNibAllittbCRtSRZmxIZVsCN7iy8ukeVb1Lqru3Xmldp3HUYQjOIZT8OASanALdWgAAwnP8ApvjnZenHfnY95acPKZQ/gD5/MHDd6QhA==</latexit>

|0�

<latexit sha1_base64="m+9t90MFUPbYlzeyMRfNIQ8EBpE=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cK9gPbUDbbSbt0swm7G6HE/gsvHhTx6r/x5r9x2+agrQ8GHu/NMDMvSATXxnW/ncLK6tr6RnGztLW9s7tX3j9o6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0M/Vbj6g0j+W9GSfoR3QgecgZNVZ6eHJJV1E5ENgrV9yqOwNZJl5OKpCj3it/dfsxSyOUhgmqdcdzE+NnVBnOBE5K3VRjQtmIDrBjqaQRaj+bXTwhJ1bpkzBWtqQhM/X3REYjrcdRYDsjaoZ60ZuK/3md1IRXfsZlkhqUbL4oTAUxMZm+T/pcITNibAllittbCRtSRZmxIZVsCN7iy8ukeVb1Lqru3Xmldp3HUYQjOIZT8OASanALdWgAAwnP8ApvjnZenHfnY95acPKZQ/gD5/MHDd6QhA==</latexit>

|0�
<latexit sha1_base64="7qYR70f4zOOIliBrQeDjja0B7pw=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8eKxhbaUDbbSbt0swm7G6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvTAXXxnW/ndLK6tr6RnmzsrW9s7tX3T941EmmGPosEYlqh1Sj4BJ9w43AdqqQxqHAVji6mfqtJ1SaJ/LBjFMMYjqQPOKMGivd+z3eq9bcujsDWSZeQWpQoNmrfnX7CctilIYJqnXHc1MT5FQZzgROKt1MY0rZiA6wY6mkMeogn506ISdW6ZMoUbakITP190ROY63HcWg7Y2qGetGbiv95ncxEV0HOZZoZlGy+KMoEMQmZ/k36XCEzYmwJZYrbWwkbUkWZselUbAje4svL5PGs7l3U3bvzWuO6iKMMR3AMp+DBJTTgFprgA4MBPMMrvDnCeXHenY95a8kpZg7hD5zPHyzkjbo=</latexit>

Ui

<latexit sha1_base64="ti8KltlzwVW1LpN4JxfV3IYWRy4=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBByCrsi6jHgxWME84BkCbOT3mTM7MwyMyuEkH/w4kERr/6PN//GSbIHTSxoKKq66e6KUsGN9f1vb219Y3Nru7BT3N3bPzgsHR03jco0wwZTQul2RA0KLrFhuRXYTjXSJBLYika3M7/1hNpwJR/sOMUwoQPJY86odVKzq4eqx3ulsl/15yCrJMhJGXLUe6Wvbl+xLEFpmaDGdAI/teGEasuZwGmxmxlMKRvRAXYclTRBE07m107JuVP6JFbalbRkrv6emNDEmHESuc6E2qFZ9mbif14ns/FNOOEyzSxKtlgUZ4JYRWavkz7XyKwYO0KZ5u5WwoZUU2ZdQEUXQrD88ippXlSDq6p/f1muVfI4CnAKZ1CBAK6hBndQhwYweIRneIU3T3kv3rv3sWhd8/KZE/gD7/MHli6PDg==</latexit>�i

<latexit sha1_base64="e5vp7yWcFVTfVPksU7Q8mTBHCZY=">AAAB9HicbVBNS8NAEN34WetX1aOX0CJ4KomIeix48VjBfkAbymY7aZduduPupFhCf4cXD4p49cd489+4bXPQ1gcDj/dmmJkXJoIb9LxvZ219Y3Nru7BT3N3bPzgsHR03jUo1gwZTQul2SA0ILqGBHAW0Ew00DgW0wtHtzG+NQRuu5ANOEghiOpA84oyilYIuwhNmda1CMNNeqeJVvTncVeLnpEJy1Hulr25fsTQGiUxQYzq+l2CQUY2cCZgWu6mBhLIRHUDHUkljMEE2P3rqnlml70ZK25LoztXfExmNjZnEoe2MKQ7NsjcT//M6KUY3QcZlkiJItlgUpcJF5c4ScPtcA0MxsYQyze2tLhtSTRnanIo2BH/55VXSvKj6V1Xv/rJSK+dxFMgpKZNz4pNrUiN3pE4ahJFH8kxeyZszdl6cd+dj0brm5DMn5A+czx9g5ZJl</latexit>

Probes
<latexit sha1_base64="PWJ5gx6TtlRUpp7hOVNjI8pTJss=">AAAB9XicbVBNS8NAEN34WetX1aOXpUXwVBIR9Vjw4rGC/YA2ls120i7dbMLuRC2h/8OLB0W8+l+8+W/ctjlo64OBx3szzMwLEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk41hwaPZazbATMghYIGCpTQTjSwKJDQCkbXU7/1ANqIWN3hOAE/YgMlQsEZWum+i/CEWV3HHIyZ9EoVt+rOQJeJl5MKyVHvlb66/ZinESjkkhnT8dwE/YxpFFzCpNhNDSSMj9gAOpYqFoHxs9nVE3pilT4NY21LIZ2pvycyFhkzjgLbGTEcmkVvKv7ndVIMr/xMqCRFUHy+KEwlxZhOI6B9oYGjHFvCuBb2VsqHTDOONqiiDcFbfHmZNM+q3kXVvT2v1Mp5HAVyTMrklHjkktTIDamTBuFEk2fySt6cR+fFeXc+5q0rTj5zRP7A+fwBOz6S4w==</latexit>

Process

<latexit sha1_base64="mMJiqYxkSTo17olpuFDXVojeChg=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cK9gPaUDabTbvtZjfsboQS+h+8eFDEq//Hm//GbZqDtj4YeLw3w8y8IOFMG9f9dkpr6xubW+Xtys7u3v5B9fCorWWqCG0RyaXqBlhTzgRtGWY47SaK4jjgtBNM7uZ+54kqzaR4NNOE+jEeChYxgo2V2uEgY+PZoFpz624OtEq8gtSgQHNQ/eqHkqQxFYZwrHXPcxPjZ1gZRjidVfqppgkmEzykPUsFjqn2s/zaGTqzSogiqWwJg3L190SGY62ncWA7Y2xGetmbi/95vdREN37GRJIaKshiUZRyZCSav45CpigxfGoJJorZWxEZYYWJsQFVbAje8surpH1R967q7sNlrXFbxFGGEziFc/DgGhpwD01oAYExPMMrvDnSeXHenY9Fa8kpZo7hD5zPH9AYj0k=</latexit>

dij

<latexit sha1_base64="62PQms+85bBYLUJdGbNSjVazUl8=">AAACEnicbZDLSsNAFIYnXmu9RV26GVpE3ZRERN0IBTeCmwr2Ak0Mk8kkHTrJhJmJUEKfwY2v4saFIm5dufNtnLRZaOsPBz7+cw4z5/dTRqWyrG9jYXFpeWW1slZd39jc2jZ3djuSZwKTNuaMi56PJGE0IW1FFSO9VBAU+4x0/eFV0e8+ECEpT+7UKCVujKKEhhQjpS3PPHbEgHv0EF5CR2axN4Q3uqZmgfe5E6AoImLsmXWrYU0E58EuoQ5KtTzzywk4zmKSKMyQlH3bSpWbI6EoZmRcdTJJUoSHKCJ9jQmKiXTzyUljeKCdAIZc6EoUnLi/N3IUSzmKfT0ZIzWQs73C/K/Xz1R44eY0STNFEjx9KMwYVBwW+cCACoIVG2lAWFD9V4gHSCCsdIpVHYI9e/I8dE4a9lnDuj2tN2tlHBWwD2rgCNjgHDTBNWiBNsDgETyDV/BmPBkvxrvxMR1dMMqdPfBHxucPsBqcyQ==</latexit>

��
i =

�

k

Kk�iK
†
k

<latexit sha1_base64="N5oPUO0SRLlXWbMApkqKy/ZE4GI=">AAAB+3icbVDLSsNAFJ3UV62vWJduQovgqiQi6rLgxo1QwT6gDWUyvWmHTh7M3EhLyK+4caGIW3/EnX/jpM1CWw8MHM65h3vneLHgCm372yhtbG5t75R3K3v7B4dH5nG1o6JEMmizSESy51EFgofQRo4CerEEGngCut70Nve7TyAVj8JHnMfgBnQccp8ziloamtUBwgzTe6AqkRBAiNnQrNsNewFrnTgFqZMCraH5NRhFLMnDTFCl+o4do5tSiZwJyCqDREFM2ZSOoa9pSANQbrq4PbPOtDKy/EjqF6K1UH8nUhooNQ88PRlQnKhVLxf/8/oJ+jduysM4QQjZcpGfCAsjKy/CGnEJDMVcE8ok17dabEIlZajrqugSnNUvr5PORcO5atgPl/VmraijTE5JjZwTh1yTJrkjLdImjMzIM3klb0ZmvBjvxsdytGQUmRPyB8bnD+I/lOM=</latexit>

Measurement

<latexit sha1_base64="h3A3iUjTHb1d3mmhwg15AmhoGaw=">AAAB8nicbVBNS8NAEN3Ur1q/qh69LC2Cp5KIqMeCHjxWsB/QhjLZbtqlm03YnYgl9Gd48aCIV3+NN/+N2zYHbX0w8Hhvhpl5QSKFQdf9dgpr6xubW8Xt0s7u3v5B+fCoZeJUM95ksYx1JwDDpVC8iQIl7ySaQxRI3g7GNzO//ci1EbF6wEnC/QiGSoSCAVqp20P+hNktIEz75apbc+egq8TLSZXkaPTLX71BzNKIK2QSjOl6boJ+BhoFk3xa6qWGJ8DGMORdSxVE3PjZ/OQpPbXKgIaxtqWQztXfExlExkyiwHZGgCOz7M3E/7xuiuG1nwmVpMgVWywKU0kxprP/6UBozlBOLAGmhb2VshFoYGhTKtkQvOWXV0nrvOZd1tz7i2q9ksdRJCekQs6IR65IndyRBmkSRmLyTF7Jm4POi/PufCxaC04+c0z+wPn8AZ+ckWA=</latexit> D
at

a

<latexit sha1_base64="53vSQP0nqp/McOQCzyNA6wDlRfI=">AAAB8HicbVBNS8NAEN3Ur1q/qh69LC2Cp5KIqMeCF48V+qG0oWy2k3bpZhN2J2IJ/RVePCji1Z/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmzjVHFo8lrG+D5gBKRS0UKCE+0QDiwIJnWB8M/M7j6CNiFUTJwn4ERsqEQrO0EoPPYQnzJqNab9cdWvuHHSVeDmpkhyNfvmrN4h5GoFCLpkxXc9N0M+YRsElTEu91EDC+JgNoWupYhEYP5sfPKWnVhnQMNa2FNK5+nsiY5ExkyiwnRHDkVn2ZuJ/XjfF8NrPhEpSBMUXi8JUUozp7Hs6EBo4yokljGthb6V8xDTjaDMq2RC85ZdXSfu85l3W3LuLar2Sx1EkJ6RCzohHrkid3JIGaRFOIvJMXsmbo50X5935WLQWnHzmmPyB8/kDCY+Qdg==</latexit>

TP
<latexit sha1_base64="598scNjtobKJcMtifPjGiex6+Ec=">AAAB/nicbVDLSsNAFL2pr1pfUXHlZmgR6qYkIuqy4EbQRQX7gDaUyXTaDp1MwsxEKKHgr7hxoYhbv8Odf+MkzUJbDwwczrmXe+b4EWdKO863VVhZXVvfKG6WtrZ3dvfs/YOWCmNJaJOEPJQdHyvKmaBNzTSnnUhSHPictv3Jdeq3H6lULBQPehpRL8AjwYaMYG2kvn3UC7AeE8zRXTWjvo9uT/t2xak5GdAycXNSgRyNvv3VG4QkDqjQhGOluq4TaS/BUjPC6azUixWNMJngEe0aKnBAlZdk8WfoxCgDNAyleUKjTP29keBAqWngm8k0oVr0UvE/rxvr4ZWXMBHFmgoyPzSMOdIhSrtAAyYp0XxqCCaSmayIjLHERJvGSqYEd/HLy6R1VnMvas79eaVezusowjGUoQouXEIdbqABTSCQwDO8wpv1ZL1Y79bHfLRg5TuH8AfW5w+qCJSK</latexit>

L(K)

<latexit sha1_base64="z/JPZDfcQi7gX4f1Jvrqll7ToC0=">AAACFnicbZDLSgMxFIYz9VbrrerSTWgR6sIyI6IuC24EXVSwF+iUcpKmbWgmMyQZoQx9Cje+ihsXirgVd76NaTuItv4Q+PjPOeScn0SCa+O6X05maXlldS27ntvY3Nreye/u1XUYK8pqNBShahLQTHDJaoYbwZqRYhAQwRpkeDmpN+6Z0jyUd2YUsXYAfcl7nIKxVid/7BNQ2JdABHQSPwAzIARfj/EUKQh8U/pxjzr5olt2p8KL4KVQRKmqnfyn3w1pHDBpqACtW54bmXYCynAq2Djnx5pFQIfQZy2LEgKm28n0rDE+tE4X90JlnzR46v6eSCDQehQQ2znZUM/XJuZ/tVZsehfthMsoNkzS2Ue9WGAT4klGuMsVo0aMLABV3O6K6QAUUGOTzNkQvPmTF6F+UvbOyu7tabFSSOPIogNUQCXkoXNUQVeoimqIogf0hF7Qq/PoPDtvzvusNeOkM/voj5yPb3yunjE=</latexit>

�̄KL(K)
<latexit sha1_base64="AzLNZGCzlnTaqk0++3GO8ESXq1I=">AAACGnicbVDLSgMxFM34rPVVdekmtAjVRZkRUZcFN4IuKtgHdGq5SdM2NJMZkoxQhn6HG3/FjQtF3Ikb/8Z0WkRbDwROzrmXe+8hkeDauO6Xs7C4tLyymlnLrm9sbm3ndnZrOowVZVUailA1CGgmuGRVw41gjUgxCIhgdTK4GPv1e6Y0D+WtGUasFUBP8i6nYKzUznk+AYV9CURAO/EDMH1C8NXoLjka4fRLQeDr4o9z2M4V3JKbAs8Tb0oKaIpKO/fhd0IaB0waKkDrpudGppWAMpwKNsr6sWYR0AH0WNNSCQHTrSQ9bYQPrNLB3VDZJw1O1d8dCQRaDwNiK8cb6llvLP7nNWPTPW8lXEaxYZJOBnVjgU2IxznhDleMGjG0BKjidldM+6CAGptm1obgzZ48T2rHJe+05N6cFMr5aRwZtI/yqIg8dIbK6BJVUBVR9ICe0At6dR6dZ+fNeZ+ULjjTnj30B87nN53pn9k=</latexit>

�̄�
KL(K)

<latexit sha1_base64="UttYuYifxzrqn0616kWyF2bQ81w=">AAAB8nicbVA9SwNBEJ2LXzF+RS1tlgTBKtyJqGXAxsIigvmA5Ah7m71kyd7tsTsnhiM/w8ZCEVt/jZ3/xk1yhSY+GHi8N8PMvCCRwqDrfjuFtfWNza3idmlnd2//oHx41DIq1Yw3mZJKdwJquBQxb6JAyTuJ5jQKJG8H45uZ337k2ggVP+Ak4X5Eh7EIBaNopW4P+RNmd8qYab9cdWvuHGSVeDmpQo5Gv/zVGyiWRjxGJqkxXc9N0M+oRsEkn5Z6qeEJZWM65F1LYxpx42fzk6fk1CoDEiptK0YyV39PZDQyZhIFtjOiODLL3kz8z+umGF77mYiTFHnMFovCVBJUZPY/GQjNGcqJJZRpYW8lbEQ1ZWhTKtkQvOWXV0nrvOZd1tz7i2q9ksdRhBOowBl4cAV1uIUGNIGBgmd4hTcHnRfn3flYtBacfOYY/sD5/AHbEpGH</latexit>

Loss
<latexit sha1_base64="htZM4xjT1B3kCLNIrXUQGp5O4AE=">AAACAHicbVC7SgNBFJ31GeMramFhMyQIVmHXQi0EAzaWEc0DkhBmJ3eTIbMPZu6KYUnjP/gFNhaK2Ik/IQgW/oa1hZNHoYkHLhzOuZd773EjKTTa9qc1Mzs3v7CYWkovr6yurWc2Nss6jBWHEg9lqKou0yBFACUUKKEaKWC+K6Hidk8HfuUKlBZhcIm9CBo+awfCE5yhkZqZ7TrCNSYXKMADSX1mzFC2+s1Mzs7bQ9Bp4oxJ7uT75fjr7faj2My811shj30IkEumdc2xI2wkTKHgEvrpeqwhYrzL2lAzNGA+6EYyfKBPd43Sol6oTAVIh+rviYT5Wvd813T6DDt60huI/3m1GL2jRiKCKEYI+GiRF0uKIR2kQVtCAUfZM4RxJcytlHeYYhxNZmkTgjP58jQp7+edg7x9bucKWTJCiuyQLNkjDjkkBXJGiqREOOmTO/JAHq0b6956sp5HrTPWeGaL/IH1+gODJ5wb</latexit>

Stiefel manifold<latexit sha1_base64="TgHiAB6x22gBhe5UmvBMhbA+82Q=">AAAB8HicbVDLSgNBEJyNrxhfUY9ehgTBU9gVUY8BLx4jmIckS5idzCZD5rHM9IphyVd48aCIVz/Hm3/jJNmDJhY0FFXddHdFieAWfP/bK6ytb2xuFbdLO7t7+wflw6OW1amhrEm10KYTEcsEV6wJHATrJIYRGQnWjsY3M7/9yIzlWt3DJGGhJEPFY04JOOmhB+wJMq2m/XLVr/lz4FUS5KSKcjT65a/eQNNUMgVUEGu7gZ9AmBEDnAo2LfVSyxJCx2TIuo4qIpkNs/nBU3zqlAGOtXGlAM/V3xMZkdZOZOQ6JYGRXfZm4n9eN4X4Osy4SlJgii4WxanAoPHsezzghlEQE0cINdzdiumIGELBZVRyIQTLL6+S1nktuKz5dxfVeiWPo4hOUAWdoQBdoTq6RQ3URBRJ9Ixe0ZtnvBfv3ftYtBa8fOYY/YH3+QNgR5Cv</latexit>on

<latexit sha1_base64="/QSGCSUIm5Al/HUCquSy5quXK5k=">AAAB/3icbVDLSgNBEJz1GeMrKnjxMiQInsKuiHoMeBG8RDAPSJYwO+lNhszuLDO9Ylhz8Fe8eFDEq7/hzb9x8jhoYkFDUdVNd1eQSGHQdb+dpeWV1bX13EZ+c2t7Z7ewt183KtUcalxJpZsBMyBFDDUUKKGZaGBRIKERDK7GfuMetBEqvsNhAn7EerEIBWdopU7hsI3wgNmNZqmhKgHNUGkz6hRKbtmdgC4Sb0ZKZIZqp/DV7iqeRhAjl8yYlucm6GdMo+ASRvl2aiBhfMB60LI0ZhEYP5vcP6LHVunSUGlbMdKJ+nsiY5ExwyiwnRHDvpn3xuJ/XivF8NLPRJykCDGfLgpTSVHRcRi0KzRwlENLGNfC3kp5n2nG0UaWtyF48y8vkvpp2Tsvu7dnpUpxFkeOHJEiOSEeuSAVck2qpEY4eSTP5JW8OU/Oi/PufExbl5zZzAH5A+fzB9oVloo=</latexit>

Kraus operators

<latexit sha1_base64="oCxsPebsS+zjTOUjdkAP0lLJS5g=">AAAB8HicbVBNS8NAEJ3Ur1q/qh69LC2Cp5KIqMdCLx4r2FZpQ9lsN+3S3STsTsQS+iu8eFDEqz/Hm//GbZuDtj4YeLw3w8y8IJHCoOt+O4W19Y3NreJ2aWd3b/+gfHjUNnGqGW+xWMb6PqCGSxHxFgqU/D7RnKpA8k4wbsz8ziPXRsTRHU4S7is6jEQoGEUrPfSQP2HWaE775apbc+cgq8TLSRVyNPvlr94gZqniETJJjel6boJ+RjUKJvm01EsNTygb0yHvWhpRxY2fzQ+eklOrDEgYa1sRkrn6eyKjypiJCmynojgyy95M/M/rphhe+5mIkhR5xBaLwlQSjMnsezIQmjOUE0so08LeStiIasrQZlSyIXjLL6+S9nnNu6y5txfVeiWPowgnUIEz8OAK6nADTWgBAwXP8ApvjnZenHfnY9FacPKZY/gD5/MH75qQZQ==</latexit>

CP

<latexit sha1_base64="AG8Dt+UMV4TsbtOU2bVeVNhfXbk=">AAACA3icbVDLSsNAFL3xWesr6k43oUVwVRIRdVlwocsK9gFtKJPJTTt08mBmIpZQcOOvuHGhiFt/wp1/46TNQlsPDBzOuffOvcdLOJPKtr+NpeWV1bX10kZ5c2t7Z9fc22/JOBUUmzTmseh4RCJnETYVUxw7iUASehzb3ugq99v3KCSLozs1TtANySBiAaNEaalvHvYUPqjsWhCfYaQsgUoQmnuTvlm1a/YU1iJxClKFAo2++dXzY5qGeg7lRMquYyfKzYhQjHKclHupxITQERlgV9OIhCjdbHrDxDrWim8FsdBP7zFVf3dkJJRyHHq6MiRqKOe9XPzP66YquHQzFiWpwojOPgpSbqnYygOxfCaQKj7WhFDB9K4WHZI8BB1bWYfgzJ+8SFqnNee8Zt+eVeuVIo4SHEEFTsCBC6jDDTSgCRQe4Rle4c14Ml6Md+NjVrpkFD0H8AfG5w/gcJg2</latexit>

Gradient retraction

<latexit sha1_base64="MJ+LZtnB2dpxgteNf7myiMFeKZs=">AAACSnicdVBNSwMxFMzWqrV+VT16CS1C9VB2RdRjwYughwr2A7q1vKRpG8xmlyQrlKW/z4snb/4ILx4U8WL6gWhbBwLDzBvey5BIcG1c98VJLaWXV1Yza9n1jc2t7dzObk2HsaKsSkMRqgYBzQSXrGq4EawRKQYBEaxO7i9Gfv2BKc1DeWsGEWsF0JO8yykYK7Vz4BNQ2JdABLQTPwDTJwRfDceMgsDXxR/xEPsmxP8E7pKjxaF2ruCW3DHwPPGmpICmqLRzz34npHHApKECtG56bmRaCSjDqWDDrB9rFgG9hx5rWiohYLqVjKsY4gOrdHA3VPZJg8fq70QCgdaDgNjJ0YV61huJi7xmbLrnrYTLKDZM0smibiywbWTUK+5wxagRA0uAKm5vxbQPCqix7WdtCd7sl+dJ7bjknZbcm5NCOT+tI4P2UR4VkYfOUBldogqqIooe0St6Rx/Ok/PmfDpfk9GUM83soT9Ipb8Be92x2A==</latexit>

�̄KL(K) � �̄�
KL(K)
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Figure 1. An illustration of GD-QPT. In QPT, we estimate
a quantum process E from data dij that represent expecta-
tion values of measurements Mj on states given by E act-
ing on probes fli. We construct a loss function L using the
data and our estimate for the process as a set of Kraus op-
erators stacked together, K. We estimate K by minimizing
the loss with GD-based optimization using batches of data.
The Kraus form guarantees that the estimate is CP and a
gradient-retraction technique restricts each GD update such
that K remains in the set of orthonormal matrices on the
Stiefel manifold, ensuring that it is also TP.

I)�]. In order for � to be CPTP, it should be positive-
semidefinite [41, 48] and satisfy TrHout(�) = I.

In our approach to QPT, we consider the Kraus-
operator form because it allows us to control the size
of the process representation. The Choi rank r of a pro-
cess is given by the minimum number of Kraus operators
necessary to represent the process. The maximum Choi
rank is r = N

2, but in realistic cases, process matri-
ces can have low ranks r π N

2 (for a unitary process,
r = 1). Our approach thus gives the flexibility to choose
the rank r = k (the number of Kraus operators) of the
process ansatz, allowing us to obtain low-rank approx-
imations without constructing the full Choi matrix. In
most previous QPT methods, the Choi-matrix represen-
tation was preferred because it made CPTP constraints
easier to handle [41] and the problem could be cast in a
linear form [44].
Learning quantum process representations. We illus-

trate the idea of GD-QPT in Fig. 1. In QPT experi-
ments, data dij are obtained as estimates (computed by
averaging single-shot outcomes) of expectation values of
measurements Mj on the output states fl

Õ
i

= E(fli) for
given probe (input) states fli. We model statistical errors
in the measurement as noise sampled from a zero-mean
Gaussian distribution N (0, ‘) with standard deviation ‘.
The process-reconstruction problem can then be cast as a
learning task: minimizing a loss function L representing
the discrepancy between the data dij and our estimate of
the process. We use

L(K) =
ÿ

ij

C
dij ≠ Tr

C
Mj

A
ÿ

k

KkfliKk
†

BDD2

+ ⁄||K||1,

(1)

TP if



QPT with gradient descent 2

ing its applicability for even three-qubit processes, which
may require several hours of computation [44]. A five-
qubit process, or a CV process with a larger cuto↵ on
the Hilbert space than used in existing methods [38, 39],
may thus become impractical with larger Choi matrices
and more data.

Projected-gradient methods [41] like PLS [42] first ob-
tain an estimate for the process and then project it
to the nearest CPTP estimate. The PLS method is
fast: it can reconstruct processes for 5–7 qubits in a
reasonable amount of time [42]. However, projection-
based techniques may require finding an initial analytical
least-squares estimate relying on an informationally com-
plete set of measurements, along with costly projection
steps involving eigendecompositions of large Choi matri-
ces or iterative subroutines. Our approach avoids these
problems while still being able to handle relatively large
Hilbert space dimensions.

We show that the simple GD-QPT technique yields
similar performances as CS and PLS on benchmarks us-
ing random processes with Gaussian noise in the data.
We also assess the performance of GD-QPT and CS
against the amount of data, to show that GD-QPT com-
bines the best of two worlds. Like CS, the GD-QPT ap-
proach works with a less than informationally complete
set of measurements, but it can still, like PLS, be run for
larger problems.

As an extension to GD-QPT, we also try out neural-
network QPT (NN-QPT) [73]. In NN-QPT, the Kraus
operators are given by the output of a neural network,
similar to ideas explored in previous works [74, 75] for
QST. We find no significant advantage of this approach
compared to GD-QPT, which indicates that a good pro-
cess representation, along with constrained GD optimiza-
tion, might be su�cient to learn quantum states and
processes. Our approach thus introduces a flexible QPT
technique, demonstrating that simple gradient-based op-
timization combined with appropriate regularization and
e�cient process representation can become an e↵ective
tool for quantum process characterization.

Kraus and Choi representations. The Kraus-operator
representation of E corresponds to k complex-valued ma-
trices {Kl} of dimension N ◊ N , that act on a den-

sity matrix fl as E(fl) =
q

k

l=1 KlflKl
† = fl

Õ. Here N

is the Hilbert-space dimension; for n qubits N = 2n.
The Kraus representation guarantees that the process is
CP [65, 76, 77]. The TP condition translates to the Kraus

operators satisfying
q

k

l=1 K
†
l
Kl = I.

The Choi representation [48, 78] of E is a single N
2 ◊

N
2 complex-valued matrix � that can be written using

Kraus operators as � =
q

k

l=1 |KlÍÈKl| with |KlÍ = (I ¢
Kl)

q
i
|iÍ¢|iÍ. The Choi matrix is thus a linear operator

acting on the tensor product of the input and output
Hilbert spaces Hin ¢ Hout. The action of � on a state fl

is given by the partial trace operation fl
Õ = TrHin [(flT ¢
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Figure 1. An illustration of GD-QPT. In QPT, we estimate
a quantum process E from data dij that represent expecta-
tion values of measurements Mj on states given by E act-
ing on probes fli. We construct a loss function L using the
data and our estimate for the process as a set of Kraus op-
erators stacked together, K. We estimate K by minimizing
the loss with GD-based optimization using batches of data.
The Kraus form guarantees that the estimate is CP and a
gradient-retraction technique restricts each GD update such
that K remains in the set of orthonormal matrices on the
Stiefel manifold, ensuring that it is also TP.

I)�]. In order for � to be CPTP, it should be positive-
semidefinite [41, 48] and satisfy TrHout(�) = I.

In our approach to QPT, we consider the Kraus-
operator form because it allows us to control the size
of the process representation. The Choi rank r of a pro-
cess is given by the minimum number of Kraus operators
necessary to represent the process. The maximum Choi
rank is r = N

2, but in realistic cases, process matri-
ces can have low ranks r π N

2 (for a unitary process,
r = 1). Our approach thus gives the flexibility to choose
the rank r = k (the number of Kraus operators) of the
process ansatz, allowing us to obtain low-rank approx-
imations without constructing the full Choi matrix. In
most previous QPT methods, the Choi-matrix represen-
tation was preferred because it made CPTP constraints
easier to handle [41] and the problem could be cast in a
linear form [44].
Learning quantum process representations. We illus-

trate the idea of GD-QPT in Fig. 1. In QPT experi-
ments, data dij are obtained as estimates (computed by
averaging single-shot outcomes) of expectation values of
measurements Mj on the output states fl

Õ
i

= E(fli) for
given probe (input) states fli. We model statistical errors
in the measurement as noise sampled from a zero-mean
Gaussian distribution N (0, ‘) with standard deviation ‘.
The process-reconstruction problem can then be cast as a
learning task: minimizing a loss function L representing
the discrepancy between the data dij and our estimate of
the process. We use

L(K) =
ÿ

ij

C
dij ≠ Tr

C
Mj

A
ÿ

k

KkfliKk
†

BDD2

+ ⁄||K||1,

(1)

2

ing its applicability for even three-qubit processes, which
may require several hours of computation [44]. A five-
qubit process, or a CV process with a larger cuto↵ on
the Hilbert space than used in existing methods [38, 39],
may thus become impractical with larger Choi matrices
and more data.

Projected-gradient methods [41] like PLS [42] first ob-
tain an estimate for the process and then project it
to the nearest CPTP estimate. The PLS method is
fast: it can reconstruct processes for 5–7 qubits in a
reasonable amount of time [42]. However, projection-
based techniques may require finding an initial analytical
least-squares estimate relying on an informationally com-
plete set of measurements, along with costly projection
steps involving eigendecompositions of large Choi matri-
ces or iterative subroutines. Our approach avoids these
problems while still being able to handle relatively large
Hilbert space dimensions.

We show that the simple GD-QPT technique yields
similar performances as CS and PLS on benchmarks us-
ing random processes with Gaussian noise in the data.
We also assess the performance of GD-QPT and CS
against the amount of data, to show that GD-QPT com-
bines the best of two worlds. Like CS, the GD-QPT ap-
proach works with a less than informationally complete
set of measurements, but it can still, like PLS, be run for
larger problems.

As an extension to GD-QPT, we also try out neural-
network QPT (NN-QPT) [73]. In NN-QPT, the Kraus
operators are given by the output of a neural network,
similar to ideas explored in previous works [74, 75] for
QST. We find no significant advantage of this approach
compared to GD-QPT, which indicates that a good pro-
cess representation, along with constrained GD optimiza-
tion, might be su�cient to learn quantum states and
processes. Our approach thus introduces a flexible QPT
technique, demonstrating that simple gradient-based op-
timization combined with appropriate regularization and
e�cient process representation can become an e↵ective
tool for quantum process characterization.

Kraus and Choi representations. The Kraus-operator
representation of E corresponds to k complex-valued ma-
trices {Kl} of dimension N ◊ N , that act on a den-

sity matrix fl as E(fl) =
q

k

l=1 KlflKl
† = fl

Õ. Here N

is the Hilbert-space dimension; for n qubits N = 2n.
The Kraus representation guarantees that the process is
CP [65, 76, 77]. The TP condition translates to the Kraus

operators satisfying
q

k

l=1 K
†
l
Kl = I.

The Choi representation [48, 78] of E is a single N
2 ◊

N
2 complex-valued matrix � that can be written using

Kraus operators as � =
q

k

l=1 |KlÍÈKl| with |KlÍ = (I ¢
Kl)

q
i
|iÍ¢|iÍ. The Choi matrix is thus a linear operator

acting on the tensor product of the input and output
Hilbert spaces Hin ¢ Hout. The action of � on a state fl

is given by the partial trace operation fl
Õ = TrHin [(flT ¢
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Figure 1. An illustration of GD-QPT. In QPT, we estimate
a quantum process E from data dij that represent expecta-
tion values of measurements Mj on states given by E act-
ing on probes fli. We construct a loss function L using the
data and our estimate for the process as a set of Kraus op-
erators stacked together, K. We estimate K by minimizing
the loss with GD-based optimization using batches of data.
The Kraus form guarantees that the estimate is CP and a
gradient-retraction technique restricts each GD update such
that K remains in the set of orthonormal matrices on the
Stiefel manifold, ensuring that it is also TP.

I)�]. In order for � to be CPTP, it should be positive-
semidefinite [41, 48] and satisfy TrHout(�) = I.

In our approach to QPT, we consider the Kraus-
operator form because it allows us to control the size
of the process representation. The Choi rank r of a pro-
cess is given by the minimum number of Kraus operators
necessary to represent the process. The maximum Choi
rank is r = N

2, but in realistic cases, process matri-
ces can have low ranks r π N

2 (for a unitary process,
r = 1). Our approach thus gives the flexibility to choose
the rank r = k (the number of Kraus operators) of the
process ansatz, allowing us to obtain low-rank approx-
imations without constructing the full Choi matrix. In
most previous QPT methods, the Choi-matrix represen-
tation was preferred because it made CPTP constraints
easier to handle [41] and the problem could be cast in a
linear form [44].
Learning quantum process representations. We illus-

trate the idea of GD-QPT in Fig. 1. In QPT experi-
ments, data dij are obtained as estimates (computed by
averaging single-shot outcomes) of expectation values of
measurements Mj on the output states fl

Õ
i

= E(fli) for
given probe (input) states fli. We model statistical errors
in the measurement as noise sampled from a zero-mean
Gaussian distribution N (0, ‘) with standard deviation ‘.
The process-reconstruction problem can then be cast as a
learning task: minimizing a loss function L representing
the discrepancy between the data dij and our estimate of
the process. We use

L(K) =
ÿ

ij

C
dij ≠ Tr

C
Mj

A
ÿ

k

KkfliKk
†

BDD2

+ ⁄||K||1,

(1)

Finding the best Kraus operators for representing the process 
can be cast as the task of minimising a loss function describing 
the discrepancy between the data and our estimate 

We use gradient descent for the minimisation



QPT with gradient descent
Keeping the Kraus operators trace-preserving requires 
restricting them to the so-called Stiefel manifold

2

ing its applicability for even three-qubit processes, which
may require several hours of computation [44]. A five-
qubit process, or a CV process with a larger cuto↵ on
the Hilbert space than used in existing methods [38, 39],
may thus become impractical with larger Choi matrices
and more data.

Projected-gradient methods [41] like PLS [42] first ob-
tain an estimate for the process and then project it
to the nearest CPTP estimate. The PLS method is
fast: it can reconstruct processes for 5–7 qubits in a
reasonable amount of time [42]. However, projection-
based techniques may require finding an initial analytical
least-squares estimate relying on an informationally com-
plete set of measurements, along with costly projection
steps involving eigendecompositions of large Choi matri-
ces or iterative subroutines. Our approach avoids these
problems while still being able to handle relatively large
Hilbert space dimensions.

We show that the simple GD-QPT technique yields
similar performances as CS and PLS on benchmarks us-
ing random processes with Gaussian noise in the data.
We also assess the performance of GD-QPT and CS
against the amount of data, to show that GD-QPT com-
bines the best of two worlds. Like CS, the GD-QPT ap-
proach works with a less than informationally complete
set of measurements, but it can still, like PLS, be run for
larger problems.

As an extension to GD-QPT, we also try out neural-
network QPT (NN-QPT) [73]. In NN-QPT, the Kraus
operators are given by the output of a neural network,
similar to ideas explored in previous works [74, 75] for
QST. We find no significant advantage of this approach
compared to GD-QPT, which indicates that a good pro-
cess representation, along with constrained GD optimiza-
tion, might be su�cient to learn quantum states and
processes. Our approach thus introduces a flexible QPT
technique, demonstrating that simple gradient-based op-
timization combined with appropriate regularization and
e�cient process representation can become an e↵ective
tool for quantum process characterization.

Kraus and Choi representations. The Kraus-operator
representation of E corresponds to k complex-valued ma-
trices {Kl} of dimension N ◊ N , that act on a den-

sity matrix fl as E(fl) =
q

k

l=1 KlflKl
† = fl

Õ. Here N

is the Hilbert-space dimension; for n qubits N = 2n.
The Kraus representation guarantees that the process is
CP [65, 76, 77]. The TP condition translates to the Kraus

operators satisfying
q

k

l=1 K
†
l
Kl = I.

The Choi representation [48, 78] of E is a single N
2 ◊

N
2 complex-valued matrix � that can be written using

Kraus operators as � =
q

k

l=1 |KlÍÈKl| with |KlÍ = (I ¢
Kl)

q
i
|iÍ¢|iÍ. The Choi matrix is thus a linear operator

acting on the tensor product of the input and output
Hilbert spaces Hin ¢ Hout. The action of � on a state fl

is given by the partial trace operation fl
Õ = TrHin [(flT ¢
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|0�
<latexit sha1_base64="7qYR70f4zOOIliBrQeDjja0B7pw=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8eKxhbaUDbbSbt0swm7G6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvTAXXxnW/ndLK6tr6RnmzsrW9s7tX3T941EmmGPosEYlqh1Sj4BJ9w43AdqqQxqHAVji6mfqtJ1SaJ/LBjFMMYjqQPOKMGivd+z3eq9bcujsDWSZeQWpQoNmrfnX7CctilIYJqnXHc1MT5FQZzgROKt1MY0rZiA6wY6mkMeogn506ISdW6ZMoUbakITP190ROY63HcWg7Y2qGetGbiv95ncxEV0HOZZoZlGy+KMoEMQmZ/k36XCEzYmwJZYrbWwkbUkWZselUbAje4svL5PGs7l3U3bvzWuO6iKMMR3AMp+DBJTTgFprgA4MBPMMrvDnCeXHenY95a8kpZg7hD5zPHyzkjbo=</latexit>

Ui

<latexit sha1_base64="ti8KltlzwVW1LpN4JxfV3IYWRy4=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBByCrsi6jHgxWME84BkCbOT3mTM7MwyMyuEkH/w4kERr/6PN//GSbIHTSxoKKq66e6KUsGN9f1vb219Y3Nru7BT3N3bPzgsHR03jco0wwZTQul2RA0KLrFhuRXYTjXSJBLYika3M7/1hNpwJR/sOMUwoQPJY86odVKzq4eqx3ulsl/15yCrJMhJGXLUe6Wvbl+xLEFpmaDGdAI/teGEasuZwGmxmxlMKRvRAXYclTRBE07m107JuVP6JFbalbRkrv6emNDEmHESuc6E2qFZ9mbif14ns/FNOOEyzSxKtlgUZ4JYRWavkz7XyKwYO0KZ5u5WwoZUU2ZdQEUXQrD88ippXlSDq6p/f1muVfI4CnAKZ1CBAK6hBndQhwYweIRneIU3T3kv3rv3sWhd8/KZE/gD7/MHli6PDg==</latexit>�i

<latexit sha1_base64="e5vp7yWcFVTfVPksU7Q8mTBHCZY=">AAAB9HicbVBNS8NAEN34WetX1aOX0CJ4KomIeix48VjBfkAbymY7aZduduPupFhCf4cXD4p49cd489+4bXPQ1gcDj/dmmJkXJoIb9LxvZ219Y3Nru7BT3N3bPzgsHR03jUo1gwZTQul2SA0ILqGBHAW0Ew00DgW0wtHtzG+NQRuu5ANOEghiOpA84oyilYIuwhNmda1CMNNeqeJVvTncVeLnpEJy1Hulr25fsTQGiUxQYzq+l2CQUY2cCZgWu6mBhLIRHUDHUkljMEE2P3rqnlml70ZK25LoztXfExmNjZnEoe2MKQ7NsjcT//M6KUY3QcZlkiJItlgUpcJF5c4ScPtcA0MxsYQyze2tLhtSTRnanIo2BH/55VXSvKj6V1Xv/rJSK+dxFMgpKZNz4pNrUiN3pE4ahJFH8kxeyZszdl6cd+dj0brm5DMn5A+czx9g5ZJl</latexit>

Probes
<latexit sha1_base64="PWJ5gx6TtlRUpp7hOVNjI8pTJss=">AAAB9XicbVBNS8NAEN34WetX1aOXpUXwVBIR9Vjw4rGC/YA2ls120i7dbMLuRC2h/8OLB0W8+l+8+W/ctjlo64OBx3szzMwLEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk41hwaPZazbATMghYIGCpTQTjSwKJDQCkbXU7/1ANqIWN3hOAE/YgMlQsEZWum+i/CEWV3HHIyZ9EoVt+rOQJeJl5MKyVHvlb66/ZinESjkkhnT8dwE/YxpFFzCpNhNDSSMj9gAOpYqFoHxs9nVE3pilT4NY21LIZ2pvycyFhkzjgLbGTEcmkVvKv7ndVIMr/xMqCRFUHy+KEwlxZhOI6B9oYGjHFvCuBb2VsqHTDOONqiiDcFbfHmZNM+q3kXVvT2v1Mp5HAVyTMrklHjkktTIDamTBuFEk2fySt6cR+fFeXc+5q0rTj5zRP7A+fwBOz6S4w==</latexit>

Process

<latexit sha1_base64="mMJiqYxkSTo17olpuFDXVojeChg=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cK9gPaUDabTbvtZjfsboQS+h+8eFDEq//Hm//GbZqDtj4YeLw3w8y8IOFMG9f9dkpr6xubW+Xtys7u3v5B9fCorWWqCG0RyaXqBlhTzgRtGWY47SaK4jjgtBNM7uZ+54kqzaR4NNOE+jEeChYxgo2V2uEgY+PZoFpz624OtEq8gtSgQHNQ/eqHkqQxFYZwrHXPcxPjZ1gZRjidVfqppgkmEzykPUsFjqn2s/zaGTqzSogiqWwJg3L190SGY62ncWA7Y2xGetmbi/95vdREN37GRJIaKshiUZRyZCSav45CpigxfGoJJorZWxEZYYWJsQFVbAje8surpH1R967q7sNlrXFbxFGGEziFc/DgGhpwD01oAYExPMMrvDnSeXHenY9Fa8kpZo7hD5zPH9AYj0k=</latexit>

dij

<latexit sha1_base64="62PQms+85bBYLUJdGbNSjVazUl8=">AAACEnicbZDLSsNAFIYnXmu9RV26GVpE3ZRERN0IBTeCmwr2Ak0Mk8kkHTrJhJmJUEKfwY2v4saFIm5dufNtnLRZaOsPBz7+cw4z5/dTRqWyrG9jYXFpeWW1slZd39jc2jZ3djuSZwKTNuaMi56PJGE0IW1FFSO9VBAU+4x0/eFV0e8+ECEpT+7UKCVujKKEhhQjpS3PPHbEgHv0EF5CR2axN4Q3uqZmgfe5E6AoImLsmXWrYU0E58EuoQ5KtTzzywk4zmKSKMyQlH3bSpWbI6EoZmRcdTJJUoSHKCJ9jQmKiXTzyUljeKCdAIZc6EoUnLi/N3IUSzmKfT0ZIzWQs73C/K/Xz1R44eY0STNFEjx9KMwYVBwW+cCACoIVG2lAWFD9V4gHSCCsdIpVHYI9e/I8dE4a9lnDuj2tN2tlHBWwD2rgCNjgHDTBNWiBNsDgETyDV/BmPBkvxrvxMR1dMMqdPfBHxucPsBqcyQ==</latexit>

��
i =

�

k

Kk�iK
†
k

<latexit sha1_base64="N5oPUO0SRLlXWbMApkqKy/ZE4GI=">AAAB+3icbVDLSsNAFJ3UV62vWJduQovgqiQi6rLgxo1QwT6gDWUyvWmHTh7M3EhLyK+4caGIW3/EnX/jpM1CWw8MHM65h3vneLHgCm372yhtbG5t75R3K3v7B4dH5nG1o6JEMmizSESy51EFgofQRo4CerEEGngCut70Nve7TyAVj8JHnMfgBnQccp8ziloamtUBwgzTe6AqkRBAiNnQrNsNewFrnTgFqZMCraH5NRhFLMnDTFCl+o4do5tSiZwJyCqDREFM2ZSOoa9pSANQbrq4PbPOtDKy/EjqF6K1UH8nUhooNQ88PRlQnKhVLxf/8/oJ+jduysM4QQjZcpGfCAsjKy/CGnEJDMVcE8ok17dabEIlZajrqugSnNUvr5PORcO5atgPl/VmraijTE5JjZwTh1yTJrkjLdImjMzIM3klb0ZmvBjvxsdytGQUmRPyB8bnD+I/lOM=</latexit>

Measurement

<latexit sha1_base64="h3A3iUjTHb1d3mmhwg15AmhoGaw=">AAAB8nicbVBNS8NAEN3Ur1q/qh69LC2Cp5KIqMeCHjxWsB/QhjLZbtqlm03YnYgl9Gd48aCIV3+NN/+N2zYHbX0w8Hhvhpl5QSKFQdf9dgpr6xubW8Xt0s7u3v5B+fCoZeJUM95ksYx1JwDDpVC8iQIl7ySaQxRI3g7GNzO//ci1EbF6wEnC/QiGSoSCAVqp20P+hNktIEz75apbc+egq8TLSZXkaPTLX71BzNKIK2QSjOl6boJ+BhoFk3xa6qWGJ8DGMORdSxVE3PjZ/OQpPbXKgIaxtqWQztXfExlExkyiwHZGgCOz7M3E/7xuiuG1nwmVpMgVWywKU0kxprP/6UBozlBOLAGmhb2VshFoYGhTKtkQvOWXV0nrvOZd1tz7i2q9ksdRJCekQs6IR65IndyRBmkSRmLyTF7Jm4POi/PufCxaC04+c0z+wPn8AZ+ckWA=</latexit> D
at

a

<latexit sha1_base64="53vSQP0nqp/McOQCzyNA6wDlRfI=">AAAB8HicbVBNS8NAEN3Ur1q/qh69LC2Cp5KIqMeCF48V+qG0oWy2k3bpZhN2J2IJ/RVePCji1Z/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmzjVHFo8lrG+D5gBKRS0UKCE+0QDiwIJnWB8M/M7j6CNiFUTJwn4ERsqEQrO0EoPPYQnzJqNab9cdWvuHHSVeDmpkhyNfvmrN4h5GoFCLpkxXc9N0M+YRsElTEu91EDC+JgNoWupYhEYP5sfPKWnVhnQMNa2FNK5+nsiY5ExkyiwnRHDkVn2ZuJ/XjfF8NrPhEpSBMUXi8JUUozp7Hs6EBo4yokljGthb6V8xDTjaDMq2RC85ZdXSfu85l3W3LuLar2Sx1EkJ6RCzohHrkid3JIGaRFOIvJMXsmbo50X5935WLQWnHzmmPyB8/kDCY+Qdg==</latexit>

TP
<latexit sha1_base64="598scNjtobKJcMtifPjGiex6+Ec=">AAAB/nicbVDLSsNAFL2pr1pfUXHlZmgR6qYkIuqy4EbQRQX7gDaUyXTaDp1MwsxEKKHgr7hxoYhbv8Odf+MkzUJbDwwczrmXe+b4EWdKO863VVhZXVvfKG6WtrZ3dvfs/YOWCmNJaJOEPJQdHyvKmaBNzTSnnUhSHPictv3Jdeq3H6lULBQPehpRL8AjwYaMYG2kvn3UC7AeE8zRXTWjvo9uT/t2xak5GdAycXNSgRyNvv3VG4QkDqjQhGOluq4TaS/BUjPC6azUixWNMJngEe0aKnBAlZdk8WfoxCgDNAyleUKjTP29keBAqWngm8k0oVr0UvE/rxvr4ZWXMBHFmgoyPzSMOdIhSrtAAyYp0XxqCCaSmayIjLHERJvGSqYEd/HLy6R1VnMvas79eaVezusowjGUoQouXEIdbqABTSCQwDO8wpv1ZL1Y79bHfLRg5TuH8AfW5w+qCJSK</latexit>

L(K)

<latexit sha1_base64="z/JPZDfcQi7gX4f1Jvrqll7ToC0=">AAACFnicbZDLSgMxFIYz9VbrrerSTWgR6sIyI6IuC24EXVSwF+iUcpKmbWgmMyQZoQx9Cje+ihsXirgVd76NaTuItv4Q+PjPOeScn0SCa+O6X05maXlldS27ntvY3Nreye/u1XUYK8pqNBShahLQTHDJaoYbwZqRYhAQwRpkeDmpN+6Z0jyUd2YUsXYAfcl7nIKxVid/7BNQ2JdABHQSPwAzIARfj/EUKQh8U/pxjzr5olt2p8KL4KVQRKmqnfyn3w1pHDBpqACtW54bmXYCynAq2Djnx5pFQIfQZy2LEgKm28n0rDE+tE4X90JlnzR46v6eSCDQehQQ2znZUM/XJuZ/tVZsehfthMsoNkzS2Ue9WGAT4klGuMsVo0aMLABV3O6K6QAUUGOTzNkQvPmTF6F+UvbOyu7tabFSSOPIogNUQCXkoXNUQVeoimqIogf0hF7Qq/PoPDtvzvusNeOkM/voj5yPb3yunjE=</latexit>

�̄KL(K)
<latexit sha1_base64="AzLNZGCzlnTaqk0++3GO8ESXq1I=">AAACGnicbVDLSgMxFM34rPVVdekmtAjVRZkRUZcFN4IuKtgHdGq5SdM2NJMZkoxQhn6HG3/FjQtF3Ikb/8Z0WkRbDwROzrmXe+8hkeDauO6Xs7C4tLyymlnLrm9sbm3ndnZrOowVZVUailA1CGgmuGRVw41gjUgxCIhgdTK4GPv1e6Y0D+WtGUasFUBP8i6nYKzUznk+AYV9CURAO/EDMH1C8NXoLjka4fRLQeDr4o9z2M4V3JKbAs8Tb0oKaIpKO/fhd0IaB0waKkDrpudGppWAMpwKNsr6sWYR0AH0WNNSCQHTrSQ9bYQPrNLB3VDZJw1O1d8dCQRaDwNiK8cb6llvLP7nNWPTPW8lXEaxYZJOBnVjgU2IxznhDleMGjG0BKjidldM+6CAGptm1obgzZ48T2rHJe+05N6cFMr5aRwZtI/yqIg8dIbK6BJVUBVR9ICe0At6dR6dZ+fNeZ+ULjjTnj30B87nN53pn9k=</latexit>

�̄�
KL(K)

<latexit sha1_base64="UttYuYifxzrqn0616kWyF2bQ81w=">AAAB8nicbVA9SwNBEJ2LXzF+RS1tlgTBKtyJqGXAxsIigvmA5Ah7m71kyd7tsTsnhiM/w8ZCEVt/jZ3/xk1yhSY+GHi8N8PMvCCRwqDrfjuFtfWNza3idmlnd2//oHx41DIq1Yw3mZJKdwJquBQxb6JAyTuJ5jQKJG8H45uZ337k2ggVP+Ak4X5Eh7EIBaNopW4P+RNmd8qYab9cdWvuHGSVeDmpQo5Gv/zVGyiWRjxGJqkxXc9N0M+oRsEkn5Z6qeEJZWM65F1LYxpx42fzk6fk1CoDEiptK0YyV39PZDQyZhIFtjOiODLL3kz8z+umGF77mYiTFHnMFovCVBJUZPY/GQjNGcqJJZRpYW8lbEQ1ZWhTKtkQvOWXV0nrvOZd1tz7i2q9ksdRhBOowBl4cAV1uIUGNIGBgmd4hTcHnRfn3flYtBacfOYY/sD5/AHbEpGH</latexit>

Loss
<latexit sha1_base64="htZM4xjT1B3kCLNIrXUQGp5O4AE=">AAACAHicbVC7SgNBFJ31GeMramFhMyQIVmHXQi0EAzaWEc0DkhBmJ3eTIbMPZu6KYUnjP/gFNhaK2Ik/IQgW/oa1hZNHoYkHLhzOuZd773EjKTTa9qc1Mzs3v7CYWkovr6yurWc2Nss6jBWHEg9lqKou0yBFACUUKKEaKWC+K6Hidk8HfuUKlBZhcIm9CBo+awfCE5yhkZqZ7TrCNSYXKMADSX1mzFC2+s1Mzs7bQ9Bp4oxJ7uT75fjr7faj2My811shj30IkEumdc2xI2wkTKHgEvrpeqwhYrzL2lAzNGA+6EYyfKBPd43Sol6oTAVIh+rviYT5Wvd813T6DDt60huI/3m1GL2jRiKCKEYI+GiRF0uKIR2kQVtCAUfZM4RxJcytlHeYYhxNZmkTgjP58jQp7+edg7x9bucKWTJCiuyQLNkjDjkkBXJGiqREOOmTO/JAHq0b6956sp5HrTPWeGaL/IH1+gODJ5wb</latexit>

Stiefel manifold<latexit sha1_base64="TgHiAB6x22gBhe5UmvBMhbA+82Q=">AAAB8HicbVDLSgNBEJyNrxhfUY9ehgTBU9gVUY8BLx4jmIckS5idzCZD5rHM9IphyVd48aCIVz/Hm3/jJNmDJhY0FFXddHdFieAWfP/bK6ytb2xuFbdLO7t7+wflw6OW1amhrEm10KYTEcsEV6wJHATrJIYRGQnWjsY3M7/9yIzlWt3DJGGhJEPFY04JOOmhB+wJMq2m/XLVr/lz4FUS5KSKcjT65a/eQNNUMgVUEGu7gZ9AmBEDnAo2LfVSyxJCx2TIuo4qIpkNs/nBU3zqlAGOtXGlAM/V3xMZkdZOZOQ6JYGRXfZm4n9eN4X4Osy4SlJgii4WxanAoPHsezzghlEQE0cINdzdiumIGELBZVRyIQTLL6+S1nktuKz5dxfVeiWPo4hOUAWdoQBdoTq6RQ3URBRJ9Ixe0ZtnvBfv3ftYtBa8fOYY/YH3+QNgR5Cv</latexit>on

<latexit sha1_base64="/QSGCSUIm5Al/HUCquSy5quXK5k=">AAAB/3icbVDLSgNBEJz1GeMrKnjxMiQInsKuiHoMeBG8RDAPSJYwO+lNhszuLDO9Ylhz8Fe8eFDEq7/hzb9x8jhoYkFDUdVNd1eQSGHQdb+dpeWV1bX13EZ+c2t7Z7ewt183KtUcalxJpZsBMyBFDDUUKKGZaGBRIKERDK7GfuMetBEqvsNhAn7EerEIBWdopU7hsI3wgNmNZqmhKgHNUGkz6hRKbtmdgC4Sb0ZKZIZqp/DV7iqeRhAjl8yYlucm6GdMo+ASRvl2aiBhfMB60LI0ZhEYP5vcP6LHVunSUGlbMdKJ+nsiY5ExwyiwnRHDvpn3xuJ/XivF8NLPRJykCDGfLgpTSVHRcRi0KzRwlENLGNfC3kp5n2nG0UaWtyF48y8vkvpp2Tsvu7dnpUpxFkeOHJEiOSEeuSAVck2qpEY4eSTP5JW8OU/Oi/PufExbl5zZzAH5A+fzB9oVloo=</latexit>

Kraus operators

<latexit sha1_base64="oCxsPebsS+zjTOUjdkAP0lLJS5g=">AAAB8HicbVBNS8NAEJ3Ur1q/qh69LC2Cp5KIqMdCLx4r2FZpQ9lsN+3S3STsTsQS+iu8eFDEqz/Hm//GbZuDtj4YeLw3w8y8IJHCoOt+O4W19Y3NreJ2aWd3b/+gfHjUNnGqGW+xWMb6PqCGSxHxFgqU/D7RnKpA8k4wbsz8ziPXRsTRHU4S7is6jEQoGEUrPfSQP2HWaE775apbc+cgq8TLSRVyNPvlr94gZqniETJJjel6boJ+RjUKJvm01EsNTygb0yHvWhpRxY2fzQ+eklOrDEgYa1sRkrn6eyKjypiJCmynojgyy95M/M/rphhe+5mIkhR5xBaLwlQSjMnsezIQmjOUE0so08LeStiIasrQZlSyIXjLL6+S9nnNu6y5txfVeiWPowgnUIEz8OAK6nADTWgBAwXP8ApvjnZenHfnY9FacPKZY/gD5/MH75qQZQ==</latexit>

CP

<latexit sha1_base64="AG8Dt+UMV4TsbtOU2bVeVNhfXbk=">AAACA3icbVDLSsNAFL3xWesr6k43oUVwVRIRdVlwocsK9gFtKJPJTTt08mBmIpZQcOOvuHGhiFt/wp1/46TNQlsPDBzOuffOvcdLOJPKtr+NpeWV1bX10kZ5c2t7Z9fc22/JOBUUmzTmseh4RCJnETYVUxw7iUASehzb3ugq99v3KCSLozs1TtANySBiAaNEaalvHvYUPqjsWhCfYaQsgUoQmnuTvlm1a/YU1iJxClKFAo2++dXzY5qGeg7lRMquYyfKzYhQjHKclHupxITQERlgV9OIhCjdbHrDxDrWim8FsdBP7zFVf3dkJJRyHHq6MiRqKOe9XPzP66YquHQzFiWpwojOPgpSbqnYygOxfCaQKj7WhFDB9K4WHZI8BB1bWYfgzJ+8SFqnNee8Zt+eVeuVIo4SHEEFTsCBC6jDDTSgCRQe4Rle4c14Ml6Md+NjVrpkFD0H8AfG5w/gcJg2</latexit>

Gradient retraction

<latexit sha1_base64="MJ+LZtnB2dpxgteNf7myiMFeKZs=">AAACSnicdVBNSwMxFMzWqrV+VT16CS1C9VB2RdRjwYughwr2A7q1vKRpG8xmlyQrlKW/z4snb/4ILx4U8WL6gWhbBwLDzBvey5BIcG1c98VJLaWXV1Yza9n1jc2t7dzObk2HsaKsSkMRqgYBzQSXrGq4EawRKQYBEaxO7i9Gfv2BKc1DeWsGEWsF0JO8yykYK7Vz4BNQ2JdABLQTPwDTJwRfDceMgsDXxR/xEPsmxP8E7pKjxaF2ruCW3DHwPPGmpICmqLRzz34npHHApKECtG56bmRaCSjDqWDDrB9rFgG9hx5rWiohYLqVjKsY4gOrdHA3VPZJg8fq70QCgdaDgNjJ0YV61huJi7xmbLrnrYTLKDZM0smibiywbWTUK+5wxagRA0uAKm5vxbQPCqix7WdtCd7sl+dJ7bjknZbcm5NCOT+tI4P2UR4VkYfOUBldogqqIooe0St6Rx/Ok/PmfDpfk9GUM83soT9Ipb8Be92x2A==</latexit>

�̄KL(K) � �̄�
KL(K)

<latexit sha1_base64="iiy4N15zv4hOAH7+MFFB7aitM68=">AAAB7nicbVDLSgNBEOz1GeMr6tHLkCB6Crsi6jHgxWME84BkCbOTTjJkdmaZmRXCko/w4kERr36PN//GSbIHTSxoKKq66e6KEsGN9f1vb219Y3Nru7BT3N3bPzgsHR03jUo1wwZTQul2RA0KLrFhuRXYTjTSOBLYisZ3M7/1hNpwJR/tJMEwpkPJB5xR66RWV49Uj5/3ShW/6s9BVkmQkwrkqPdKX92+YmmM0jJBjekEfmLDjGrLmcBpsZsaTCgb0yF2HJU0RhNm83On5MwpfTJQ2pW0ZK7+nshobMwkjlxnTO3ILHsz8T+vk9rBbZhxmaQWJVssGqSCWEVmv5M+18ismDhCmebuVsJGVFNmXUJFF0Kw/PIqaV5Wg+uq/3BVqZXzOApwCmW4gABuoAb3UIcGMBjDM7zCm5d4L96797FoXfPymRP4A+/zB/bXjzk=</latexit>

��
i
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Figure 1. An illustration of GD-QPT. In QPT, we estimate
a quantum process E from data dij that represent expecta-
tion values of measurements Mj on states given by E act-
ing on probes fli. We construct a loss function L using the
data and our estimate for the process as a set of Kraus op-
erators stacked together, K. We estimate K by minimizing
the loss with GD-based optimization using batches of data.
The Kraus form guarantees that the estimate is CP and a
gradient-retraction technique restricts each GD update such
that K remains in the set of orthonormal matrices on the
Stiefel manifold, ensuring that it is also TP.

I)�]. In order for � to be CPTP, it should be positive-
semidefinite [41, 48] and satisfy TrHout(�) = I.

In our approach to QPT, we consider the Kraus-
operator form because it allows us to control the size
of the process representation. The Choi rank r of a pro-
cess is given by the minimum number of Kraus operators
necessary to represent the process. The maximum Choi
rank is r = N

2, but in realistic cases, process matri-
ces can have low ranks r π N

2 (for a unitary process,
r = 1). Our approach thus gives the flexibility to choose
the rank r = k (the number of Kraus operators) of the
process ansatz, allowing us to obtain low-rank approx-
imations without constructing the full Choi matrix. In
most previous QPT methods, the Choi-matrix represen-
tation was preferred because it made CPTP constraints
easier to handle [41] and the problem could be cast in a
linear form [44].
Learning quantum process representations. We illus-

trate the idea of GD-QPT in Fig. 1. In QPT experi-
ments, data dij are obtained as estimates (computed by
averaging single-shot outcomes) of expectation values of
measurements Mj on the output states fl

Õ
i

= E(fli) for
given probe (input) states fli. We model statistical errors
in the measurement as noise sampled from a zero-mean
Gaussian distribution N (0, ‘) with standard deviation ‘.
The process-reconstruction problem can then be cast as a
learning task: minimizing a loss function L representing
the discrepancy between the data dij and our estimate of
the process. We use

L(K) =
ÿ

ij

C
dij ≠ Tr

C
Mj

A
ÿ

k

KkfliKk
†

BDD2

+ ⁄||K||1,

(1)

A modified update rule for the 
gradient descent takes care of this

3

which combines least-squares-error loss with L1 regular-
ization. Here, K = [K1, . . . , Kk] is a kN ◊ N matrix,
which represents the process by stacking the k Kraus op-
erators, and ||K||1 is given by the L1 norm [79, 80], with
⁄ Ø 0 the strength of the regularization. We fix ⁄ = 10≠3

in this Letter, but it can be optimized further as a hy-
perparameter.

The loss function can be minimized with GD by up-
dating K along the negative (conjugate, since the Kraus
operators are complex [81]) gradient Ò̄KL(K). However,
simple GD might lead to an estimate that violates the
TP constraint, which can be equivalently described as
the orthonormality condition K†K = I. To counter such
violations, one could add a loss term that penalizes them,
e.g., ||

q
l
K

†
l
Kl ≠ I||1. However, this penalty does not

strictly enforce the orthonormal condition.
In the Choi representation, we can linearize the prob-

lem to implement CS-QPT as

�CS = arg min||�Õ||1 s.t. �Õ Ø 0, ||S�̨Õ ≠ d̨||2 Æ ”, (2)

where ” is the noise level we set as a threshold. The ma-
trix S is similar to the sensing matrix in QST [82], which
is constructed using the probes and measurement oper-
ators {fli, Mj} [41]. The data is collected into a vector

d̨ with an appropriate flattening �̨Õ of the Choi matrix.
The TP condition is implemented by setting the con-
straint TrHout(�Õ) ≠ I = 0. We use the splitting conic
solver [83] to solve the convex optimization task for CS
in Python with CVXPY [84, 85] following Qiskit [86] to
implement the CPTP constraints.

Gradient descent on the Stiefel manifold. The or-
thonormal condition on K defines the so-called Stiefel
manifold [70]. It is possible to restrict the gradients
such that we never leave this manifold during the op-
timization [66–68, 70, 71]; this is an example of Rie-
mannian optimization on a manifold [71]. Several works
have addressed this problem using a so-called retraction
technique that is an approximation to the exponential
map [87]. The retraction restricts the updated K to the
Stiefel manifold while minimizing the loss (see Fig. 1).

Let G
Õ = Ò̄KL(K). At each update step, we normalize

the gradients with the L2 norm as G = G
Õ
/||GÕ||2. If

A = [G K] and B = [K ≠ G], representing stacked
matrices, the trace-preserving retraction is given by

Ò̄ú
KL(K) = A(I + ÷

2B
†
A)≠1

B
†K, (3)

where ÷ is a learning rate, such that we can iteratively
apply the gradient updates KÕ = K ≠ ÷Ò̄ú

KL(K) to mini-
mize the loss L(K) while keeping K in the Stiefel mani-
fold. The retraction formula is based on the Cayley trans-
form and the use of the Sherman-Morrison-Woodbury
formula [70].

The starting estimate for the Kraus operators are taken
to be random unitary matrices with appropriate normal-
ization guaranteeing that they are CPTP. We consider a
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Figure 2. Applying gradient-based learning of Kraus oper-
ators to reconstruct a CV quantum process with a Hilbert-
space cuto↵ of 32. The probe states are coherent states |–iÍ
in a 10 ◊ 10 grid with Re[–i], Im[–i] œ [≠2.5, 2.5]. The mea-
surements are the value of the displaced parity �(—j) in a
10 ◊ 10 grid with Re[—j ], Im[—j ] œ [≠3, 3]. The data collected
is chosen to be very coarse, to demonstrate that we only need
a few measurements for each probe in our reconstruction. We
sample more data in a finer grid (dÕ

ij) from our process esti-
mate to show the match with the true process.

learning rate that decays by a factor 0.999 in each step
with ÷(0) = 0.1.

Results and benchmarking. We start with an exam-
ple of QPT for a CV quantum operation — a selective
number-dependent arbitrary phase (SNAP) gate [73, 88,
89] along with a displacement operation — using coher-
ent states as probes [38]. The SNAP gate has been re-
cently used experimentally to create a variety of inter-
esting CV quantum states such as Gottesman–Kitaev–
Preskill states and the cubic phase state [31]. The pa-
rameters of the chosen SNAP + displacement operation
are given in the Supplementary Material [73]. In such CV
problems, choosing an appropriate Hilbert-space cuto↵,
which allows to correctly describe the state at hand, is
fundamental [38, 39]. Here, we consider a cuto↵ of 32,
which, to the best of our knowledge, is the largest dimen-
sion explored for single-mode CV QPT [35, 38, 90, 91].

In Fig. 2, we show the Wigner functions for a single
instance of a coherent probe state fli = |–iÍÈ–i|, target
state fl

Õ
i

= E(fli) after the process, and sampled data dij .
The data corresponds to measurements of the displaced
parity operator �(—) on fl

Õ
i
. Since both –i and — are con-

tinuous, we need to select a grid to run an experiment.
We deliberately choose a very coarse grid to highlight
that we do not require full Wigner tomography for each
probe state during QPT. In an experiment, appropriate
choices have to be considered for the probes and measure-
ments depending on the process as well as the limitations
of the experimental setup.

There are several distance measures available to quan-
tify the di↵erence between quantum processes [92, 93].

We consider the fidelity F (�, �Õ) = tr
1Ô

��Õ
Ô

�
2

of reconstruction according to the definition of pro-
cess fidelity [94] by converting our Kraus reconstruction
to the Choi form with the appropriate normalization,
�GD-QPT

/N . The average value of F for 30 random
choices of the Kraus operators with a noise ‘ = 10≠2

3

which combines least-squares-error loss with L1 regular-
ization. Here, K = [K1, . . . , Kk] is a kN ◊ N matrix,
which represents the process by stacking the k Kraus op-
erators, and ||K||1 is given by the L1 norm [79, 80], with
⁄ Ø 0 the strength of the regularization. We fix ⁄ = 10≠3

in this Letter, but it can be optimized further as a hy-
perparameter.

The loss function can be minimized with GD by up-
dating K along the negative (conjugate, since the Kraus
operators are complex [81]) gradient Ò̄KL(K). However,
simple GD might lead to an estimate that violates the
TP constraint, which can be equivalently described as
the orthonormality condition K†K = I. To counter such
violations, one could add a loss term that penalizes them,
e.g., ||

q
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K

†
l
Kl ≠ I||1. However, this penalty does not

strictly enforce the orthonormal condition.
In the Choi representation, we can linearize the prob-

lem to implement CS-QPT as

�CS = arg min||�Õ||1 s.t. �Õ Ø 0, ||S�̨Õ ≠ d̨||2 Æ ”, (2)

where ” is the noise level we set as a threshold. The ma-
trix S is similar to the sensing matrix in QST [82], which
is constructed using the probes and measurement oper-
ators {fli, Mj} [41]. The data is collected into a vector

d̨ with an appropriate flattening �̨Õ of the Choi matrix.
The TP condition is implemented by setting the con-
straint TrHout(�Õ) ≠ I = 0. We use the splitting conic
solver [83] to solve the convex optimization task for CS
in Python with CVXPY [84, 85] following Qiskit [86] to
implement the CPTP constraints.

Gradient descent on the Stiefel manifold. The or-
thonormal condition on K defines the so-called Stiefel
manifold [70]. It is possible to restrict the gradients
such that we never leave this manifold during the op-
timization [66–68, 70, 71]; this is an example of Rie-
mannian optimization on a manifold [71]. Several works
have addressed this problem using a so-called retraction
technique that is an approximation to the exponential
map [87]. The retraction restricts the updated K to the
Stiefel manifold while minimizing the loss (see Fig. 1).

Let G
Õ = Ò̄KL(K). At each update step, we normalize

the gradients with the L2 norm as G = G
Õ
/||GÕ||2. If

A = [G K] and B = [K ≠ G], representing stacked
matrices, the trace-preserving retraction is given by

Ò̄ú
KL(K) = A(I + ÷

2B
†
A)≠1

B
†K, (3)

where ÷ is a learning rate, such that we can iteratively
apply the gradient updates KÕ = K ≠ ÷Ò̄ú

KL(K) to mini-
mize the loss L(K) while keeping K in the Stiefel mani-
fold. The retraction formula is based on the Cayley trans-
form and the use of the Sherman-Morrison-Woodbury
formula [70].

The starting estimate for the Kraus operators are taken
to be random unitary matrices with appropriate normal-
ization guaranteeing that they are CPTP. We consider a
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Figure 2. Applying gradient-based learning of Kraus oper-
ators to reconstruct a CV quantum process with a Hilbert-
space cuto↵ of 32. The probe states are coherent states |–iÍ
in a 10 ◊ 10 grid with Re[–i], Im[–i] œ [≠2.5, 2.5]. The mea-
surements are the value of the displaced parity �(—j) in a
10 ◊ 10 grid with Re[—j ], Im[—j ] œ [≠3, 3]. The data collected
is chosen to be very coarse, to demonstrate that we only need
a few measurements for each probe in our reconstruction. We
sample more data in a finer grid (dÕ

ij) from our process esti-
mate to show the match with the true process.

learning rate that decays by a factor 0.999 in each step
with ÷(0) = 0.1.

Results and benchmarking. We start with an exam-
ple of QPT for a CV quantum operation — a selective
number-dependent arbitrary phase (SNAP) gate [73, 88,
89] along with a displacement operation — using coher-
ent states as probes [38]. The SNAP gate has been re-
cently used experimentally to create a variety of inter-
esting CV quantum states such as Gottesman–Kitaev–
Preskill states and the cubic phase state [31]. The pa-
rameters of the chosen SNAP + displacement operation
are given in the Supplementary Material [73]. In such CV
problems, choosing an appropriate Hilbert-space cuto↵,
which allows to correctly describe the state at hand, is
fundamental [38, 39]. Here, we consider a cuto↵ of 32,
which, to the best of our knowledge, is the largest dimen-
sion explored for single-mode CV QPT [35, 38, 90, 91].

In Fig. 2, we show the Wigner functions for a single
instance of a coherent probe state fli = |–iÍÈ–i|, target
state fl

Õ
i

= E(fli) after the process, and sampled data dij .
The data corresponds to measurements of the displaced
parity operator �(—) on fl

Õ
i
. Since both –i and — are con-

tinuous, we need to select a grid to run an experiment.
We deliberately choose a very coarse grid to highlight
that we do not require full Wigner tomography for each
probe state during QPT. In an experiment, appropriate
choices have to be considered for the probes and measure-
ments depending on the process as well as the limitations
of the experimental setup.

There are several distance measures available to quan-
tify the di↵erence between quantum processes [92, 93].

We consider the fidelity F (�, �Õ) = tr
1Ô
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of reconstruction according to the definition of pro-
cess fidelity [94] by converting our Kraus reconstruction
to the Choi form with the appropriate normalization,
�GD-QPT

/N . The average value of F for 30 random
choices of the Kraus operators with a noise ‘ = 10≠2

3

which combines least-squares-error loss with L1 regular-
ization. Here, K = [K1, . . . , Kk] is a kN ◊ N matrix,
which represents the process by stacking the k Kraus op-
erators, and ||K||1 is given by the L1 norm [79, 80], with
⁄ Ø 0 the strength of the regularization. We fix ⁄ = 10≠3

in this Letter, but it can be optimized further as a hy-
perparameter.

The loss function can be minimized with GD by up-
dating K along the negative (conjugate, since the Kraus
operators are complex [81]) gradient Ò̄KL(K). However,
simple GD might lead to an estimate that violates the
TP constraint, which can be equivalently described as
the orthonormality condition K†K = I. To counter such
violations, one could add a loss term that penalizes them,
e.g., ||

q
l
K

†
l
Kl ≠ I||1. However, this penalty does not

strictly enforce the orthonormal condition.
In the Choi representation, we can linearize the prob-

lem to implement CS-QPT as

�CS = arg min||�Õ||1 s.t. �Õ Ø 0, ||S�̨Õ ≠ d̨||2 Æ ”, (2)

where ” is the noise level we set as a threshold. The ma-
trix S is similar to the sensing matrix in QST [82], which
is constructed using the probes and measurement oper-
ators {fli, Mj} [41]. The data is collected into a vector

d̨ with an appropriate flattening �̨Õ of the Choi matrix.
The TP condition is implemented by setting the con-
straint TrHout(�Õ) ≠ I = 0. We use the splitting conic
solver [83] to solve the convex optimization task for CS
in Python with CVXPY [84, 85] following Qiskit [86] to
implement the CPTP constraints.

Gradient descent on the Stiefel manifold. The or-
thonormal condition on K defines the so-called Stiefel
manifold [70]. It is possible to restrict the gradients
such that we never leave this manifold during the op-
timization [66–68, 70, 71]; this is an example of Rie-
mannian optimization on a manifold [71]. Several works
have addressed this problem using a so-called retraction
technique that is an approximation to the exponential
map [87]. The retraction restricts the updated K to the
Stiefel manifold while minimizing the loss (see Fig. 1).

Let G
Õ = Ò̄KL(K). At each update step, we normalize

the gradients with the L2 norm as G = G
Õ
/||GÕ||2. If

A = [G K] and B = [K ≠ G], representing stacked
matrices, the trace-preserving retraction is given by

Ò̄ú
KL(K) = A(I + ÷

2B
†
A)≠1

B
†K, (3)

where ÷ is a learning rate, such that we can iteratively
apply the gradient updates KÕ = K ≠ ÷Ò̄ú

KL(K) to mini-
mize the loss L(K) while keeping K in the Stiefel mani-
fold. The retraction formula is based on the Cayley trans-
form and the use of the Sherman-Morrison-Woodbury
formula [70].

The starting estimate for the Kraus operators are taken
to be random unitary matrices with appropriate normal-
ization guaranteeing that they are CPTP. We consider a
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Figure 2. Applying gradient-based learning of Kraus oper-
ators to reconstruct a CV quantum process with a Hilbert-
space cuto↵ of 32. The probe states are coherent states |–iÍ
in a 10 ◊ 10 grid with Re[–i], Im[–i] œ [≠2.5, 2.5]. The mea-
surements are the value of the displaced parity �(—j) in a
10 ◊ 10 grid with Re[—j ], Im[—j ] œ [≠3, 3]. The data collected
is chosen to be very coarse, to demonstrate that we only need
a few measurements for each probe in our reconstruction. We
sample more data in a finer grid (dÕ

ij) from our process esti-
mate to show the match with the true process.

learning rate that decays by a factor 0.999 in each step
with ÷(0) = 0.1.

Results and benchmarking. We start with an exam-
ple of QPT for a CV quantum operation — a selective
number-dependent arbitrary phase (SNAP) gate [73, 88,
89] along with a displacement operation — using coher-
ent states as probes [38]. The SNAP gate has been re-
cently used experimentally to create a variety of inter-
esting CV quantum states such as Gottesman–Kitaev–
Preskill states and the cubic phase state [31]. The pa-
rameters of the chosen SNAP + displacement operation
are given in the Supplementary Material [73]. In such CV
problems, choosing an appropriate Hilbert-space cuto↵,
which allows to correctly describe the state at hand, is
fundamental [38, 39]. Here, we consider a cuto↵ of 32,
which, to the best of our knowledge, is the largest dimen-
sion explored for single-mode CV QPT [35, 38, 90, 91].

In Fig. 2, we show the Wigner functions for a single
instance of a coherent probe state fli = |–iÍÈ–i|, target
state fl

Õ
i

= E(fli) after the process, and sampled data dij .
The data corresponds to measurements of the displaced
parity operator �(—) on fl

Õ
i
. Since both –i and — are con-

tinuous, we need to select a grid to run an experiment.
We deliberately choose a very coarse grid to highlight
that we do not require full Wigner tomography for each
probe state during QPT. In an experiment, appropriate
choices have to be considered for the probes and measure-
ments depending on the process as well as the limitations
of the experimental setup.

There are several distance measures available to quan-
tify the di↵erence between quantum processes [92, 93].

We consider the fidelity F (�, �Õ) = tr
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of reconstruction according to the definition of pro-
cess fidelity [94] by converting our Kraus reconstruction
to the Choi form with the appropriate normalization,
�GD-QPT

/N . The average value of F for 30 random
choices of the Kraus operators with a noise ‘ = 10≠2

3

which combines least-squares-error loss with L1 regular-
ization. Here, K = [K1, . . . , Kk] is a kN ◊ N matrix,
which represents the process by stacking the k Kraus op-
erators, and ||K||1 is given by the L1 norm [79, 80], with
⁄ Ø 0 the strength of the regularization. We fix ⁄ = 10≠3

in this Letter, but it can be optimized further as a hy-
perparameter.

The loss function can be minimized with GD by up-
dating K along the negative (conjugate, since the Kraus
operators are complex [81]) gradient Ò̄KL(K). However,
simple GD might lead to an estimate that violates the
TP constraint, which can be equivalently described as
the orthonormality condition K†K = I. To counter such
violations, one could add a loss term that penalizes them,
e.g., ||
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†
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Kl ≠ I||1. However, this penalty does not

strictly enforce the orthonormal condition.
In the Choi representation, we can linearize the prob-

lem to implement CS-QPT as

�CS = arg min||�Õ||1 s.t. �Õ Ø 0, ||S�̨Õ ≠ d̨||2 Æ ”, (2)

where ” is the noise level we set as a threshold. The ma-
trix S is similar to the sensing matrix in QST [82], which
is constructed using the probes and measurement oper-
ators {fli, Mj} [41]. The data is collected into a vector

d̨ with an appropriate flattening �̨Õ of the Choi matrix.
The TP condition is implemented by setting the con-
straint TrHout(�Õ) ≠ I = 0. We use the splitting conic
solver [83] to solve the convex optimization task for CS
in Python with CVXPY [84, 85] following Qiskit [86] to
implement the CPTP constraints.

Gradient descent on the Stiefel manifold. The or-
thonormal condition on K defines the so-called Stiefel
manifold [70]. It is possible to restrict the gradients
such that we never leave this manifold during the op-
timization [66–68, 70, 71]; this is an example of Rie-
mannian optimization on a manifold [71]. Several works
have addressed this problem using a so-called retraction
technique that is an approximation to the exponential
map [87]. The retraction restricts the updated K to the
Stiefel manifold while minimizing the loss (see Fig. 1).

Let G
Õ = Ò̄KL(K). At each update step, we normalize

the gradients with the L2 norm as G = G
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/||GÕ||2. If

A = [G K] and B = [K ≠ G], representing stacked
matrices, the trace-preserving retraction is given by
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where ÷ is a learning rate, such that we can iteratively
apply the gradient updates KÕ = K ≠ ÷Ò̄ú

KL(K) to mini-
mize the loss L(K) while keeping K in the Stiefel mani-
fold. The retraction formula is based on the Cayley trans-
form and the use of the Sherman-Morrison-Woodbury
formula [70].

The starting estimate for the Kraus operators are taken
to be random unitary matrices with appropriate normal-
ization guaranteeing that they are CPTP. We consider a
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Figure 2. Applying gradient-based learning of Kraus oper-
ators to reconstruct a CV quantum process with a Hilbert-
space cuto↵ of 32. The probe states are coherent states |–iÍ
in a 10 ◊ 10 grid with Re[–i], Im[–i] œ [≠2.5, 2.5]. The mea-
surements are the value of the displaced parity �(—j) in a
10 ◊ 10 grid with Re[—j ], Im[—j ] œ [≠3, 3]. The data collected
is chosen to be very coarse, to demonstrate that we only need
a few measurements for each probe in our reconstruction. We
sample more data in a finer grid (dÕ

ij) from our process esti-
mate to show the match with the true process.

learning rate that decays by a factor 0.999 in each step
with ÷(0) = 0.1.

Results and benchmarking. We start with an exam-
ple of QPT for a CV quantum operation — a selective
number-dependent arbitrary phase (SNAP) gate [73, 88,
89] along with a displacement operation — using coher-
ent states as probes [38]. The SNAP gate has been re-
cently used experimentally to create a variety of inter-
esting CV quantum states such as Gottesman–Kitaev–
Preskill states and the cubic phase state [31]. The pa-
rameters of the chosen SNAP + displacement operation
are given in the Supplementary Material [73]. In such CV
problems, choosing an appropriate Hilbert-space cuto↵,
which allows to correctly describe the state at hand, is
fundamental [38, 39]. Here, we consider a cuto↵ of 32,
which, to the best of our knowledge, is the largest dimen-
sion explored for single-mode CV QPT [35, 38, 90, 91].

In Fig. 2, we show the Wigner functions for a single
instance of a coherent probe state fli = |–iÍÈ–i|, target
state fl

Õ
i

= E(fli) after the process, and sampled data dij .
The data corresponds to measurements of the displaced
parity operator �(—) on fl

Õ
i
. Since both –i and — are con-

tinuous, we need to select a grid to run an experiment.
We deliberately choose a very coarse grid to highlight
that we do not require full Wigner tomography for each
probe state during QPT. In an experiment, appropriate
choices have to be considered for the probes and measure-
ments depending on the process as well as the limitations
of the experimental setup.

There are several distance measures available to quan-
tify the di↵erence between quantum processes [92, 93].

We consider the fidelity F (�, �Õ) = tr
1Ô

��Õ
Ô

�
2

of reconstruction according to the definition of pro-
cess fidelity [94] by converting our Kraus reconstruction
to the Choi form with the appropriate normalization,
�GD-QPT

/N . The average value of F for 30 random
choices of the Kraus operators with a noise ‘ = 10≠2

3

which combines least-squares-error loss with L1 regular-
ization. Here, K = [K1, . . . , Kk] is a kN ◊ N matrix,
which represents the process by stacking the k Kraus op-
erators, and ||K||1 is given by the L1 norm [79, 80], with
⁄ Ø 0 the strength of the regularization. We fix ⁄ = 10≠3

in this Letter, but it can be optimized further as a hy-
perparameter.

The loss function can be minimized with GD by up-
dating K along the negative (conjugate, since the Kraus
operators are complex [81]) gradient Ò̄KL(K). However,
simple GD might lead to an estimate that violates the
TP constraint, which can be equivalently described as
the orthonormality condition K†K = I. To counter such
violations, one could add a loss term that penalizes them,
e.g., ||

q
l
K

†
l
Kl ≠ I||1. However, this penalty does not

strictly enforce the orthonormal condition.
In the Choi representation, we can linearize the prob-

lem to implement CS-QPT as

�CS = arg min||�Õ||1 s.t. �Õ Ø 0, ||S�̨Õ ≠ d̨||2 Æ ”, (2)

where ” is the noise level we set as a threshold. The ma-
trix S is similar to the sensing matrix in QST [82], which
is constructed using the probes and measurement oper-
ators {fli, Mj} [41]. The data is collected into a vector

d̨ with an appropriate flattening �̨Õ of the Choi matrix.
The TP condition is implemented by setting the con-
straint TrHout(�Õ) ≠ I = 0. We use the splitting conic
solver [83] to solve the convex optimization task for CS
in Python with CVXPY [84, 85] following Qiskit [86] to
implement the CPTP constraints.

Gradient descent on the Stiefel manifold. The or-
thonormal condition on K defines the so-called Stiefel
manifold [70]. It is possible to restrict the gradients
such that we never leave this manifold during the op-
timization [66–68, 70, 71]; this is an example of Rie-
mannian optimization on a manifold [71]. Several works
have addressed this problem using a so-called retraction
technique that is an approximation to the exponential
map [87]. The retraction restricts the updated K to the
Stiefel manifold while minimizing the loss (see Fig. 1).

Let G
Õ = Ò̄KL(K). At each update step, we normalize

the gradients with the L2 norm as G = G
Õ
/||GÕ||2. If

A = [G K] and B = [K ≠ G], representing stacked
matrices, the trace-preserving retraction is given by

Ò̄ú
KL(K) = A(I + ÷

2B
†
A)≠1

B
†K, (3)

where ÷ is a learning rate, such that we can iteratively
apply the gradient updates KÕ = K ≠ ÷Ò̄ú

KL(K) to mini-
mize the loss L(K) while keeping K in the Stiefel mani-
fold. The retraction formula is based on the Cayley trans-
form and the use of the Sherman-Morrison-Woodbury
formula [70].

The starting estimate for the Kraus operators are taken
to be random unitary matrices with appropriate normal-
ization guaranteeing that they are CPTP. We consider a
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Figure 2. Applying gradient-based learning of Kraus oper-
ators to reconstruct a CV quantum process with a Hilbert-
space cuto↵ of 32. The probe states are coherent states |–iÍ
in a 10 ◊ 10 grid with Re[–i], Im[–i] œ [≠2.5, 2.5]. The mea-
surements are the value of the displaced parity �(—j) in a
10 ◊ 10 grid with Re[—j ], Im[—j ] œ [≠3, 3]. The data collected
is chosen to be very coarse, to demonstrate that we only need
a few measurements for each probe in our reconstruction. We
sample more data in a finer grid (dÕ

ij) from our process esti-
mate to show the match with the true process.

learning rate that decays by a factor 0.999 in each step
with ÷(0) = 0.1.

Results and benchmarking. We start with an exam-
ple of QPT for a CV quantum operation — a selective
number-dependent arbitrary phase (SNAP) gate [73, 88,
89] along with a displacement operation — using coher-
ent states as probes [38]. The SNAP gate has been re-
cently used experimentally to create a variety of inter-
esting CV quantum states such as Gottesman–Kitaev–
Preskill states and the cubic phase state [31]. The pa-
rameters of the chosen SNAP + displacement operation
are given in the Supplementary Material [73]. In such CV
problems, choosing an appropriate Hilbert-space cuto↵,
which allows to correctly describe the state at hand, is
fundamental [38, 39]. Here, we consider a cuto↵ of 32,
which, to the best of our knowledge, is the largest dimen-
sion explored for single-mode CV QPT [35, 38, 90, 91].

In Fig. 2, we show the Wigner functions for a single
instance of a coherent probe state fli = |–iÍÈ–i|, target
state fl

Õ
i

= E(fli) after the process, and sampled data dij .
The data corresponds to measurements of the displaced
parity operator �(—) on fl

Õ
i
. Since both –i and — are con-

tinuous, we need to select a grid to run an experiment.
We deliberately choose a very coarse grid to highlight
that we do not require full Wigner tomography for each
probe state during QPT. In an experiment, appropriate
choices have to be considered for the probes and measure-
ments depending on the process as well as the limitations
of the experimental setup.

There are several distance measures available to quan-
tify the di↵erence between quantum processes [92, 93].

We consider the fidelity F (�, �Õ) = tr
1Ô

��Õ
Ô

�
2

of reconstruction according to the definition of pro-
cess fidelity [94] by converting our Kraus reconstruction
to the Choi form with the appropriate normalization,
�GD-QPT

/N . The average value of F for 30 random
choices of the Kraus operators with a noise ‘ = 10≠2
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have addressed this problem using a so-called retraction
technique that is an approximation to the exponential
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Figure 2. Applying gradient-based learning of Kraus oper-
ators to reconstruct a CV quantum process with a Hilbert-
space cuto↵ of 32. The probe states are coherent states |–iÍ
in a 10 ◊ 10 grid with Re[–i], Im[–i] œ [≠2.5, 2.5]. The mea-
surements are the value of the displaced parity �(—j) in a
10 ◊ 10 grid with Re[—j ], Im[—j ] œ [≠3, 3]. The data collected
is chosen to be very coarse, to demonstrate that we only need
a few measurements for each probe in our reconstruction. We
sample more data in a finer grid (dÕ

ij) from our process esti-
mate to show the match with the true process.

learning rate that decays by a factor 0.999 in each step
with ÷(0) = 0.1.

Results and benchmarking. We start with an exam-
ple of QPT for a CV quantum operation — a selective
number-dependent arbitrary phase (SNAP) gate [73, 88,
89] along with a displacement operation — using coher-
ent states as probes [38]. The SNAP gate has been re-
cently used experimentally to create a variety of inter-
esting CV quantum states such as Gottesman–Kitaev–
Preskill states and the cubic phase state [31]. The pa-
rameters of the chosen SNAP + displacement operation
are given in the Supplementary Material [73]. In such CV
problems, choosing an appropriate Hilbert-space cuto↵,
which allows to correctly describe the state at hand, is
fundamental [38, 39]. Here, we consider a cuto↵ of 32,
which, to the best of our knowledge, is the largest dimen-
sion explored for single-mode CV QPT [35, 38, 90, 91].

In Fig. 2, we show the Wigner functions for a single
instance of a coherent probe state fli = |–iÍÈ–i|, target
state fl
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= E(fli) after the process, and sampled data dij .
The data corresponds to measurements of the displaced
parity operator �(—) on fl
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. Since both –i and — are con-

tinuous, we need to select a grid to run an experiment.
We deliberately choose a very coarse grid to highlight
that we do not require full Wigner tomography for each
probe state during QPT. In an experiment, appropriate
choices have to be considered for the probes and measure-
ments depending on the process as well as the limitations
of the experimental setup.

There are several distance measures available to quan-
tify the di↵erence between quantum processes [92, 93].
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Figure 3. Benchmarking GD-QPT (red) against PLS (blue)
and CS (green) for random two-qubit (n = 2) full-rank
(r = 16) processes. (a) Mean infidelities for various number
of Kraus operators as the Gaussian noise level ‘ is decreased
for 30 random processes. Shading shows one standard devia-
tion. (b) Average infidelities for reconstructions of the same
processes using a fraction “ of the total data used in (a). We
randomly select a

Ô
“/6n ◊ Ô

“/6n subset of the total 6n ◊ 6n

Pauli probes and measurements.

is > 0.97. Each reconstruction converges within 50 iter-
ations taking tens of seconds on a standard laptop with
a 32GB memory and 2.9GHz 6-Core Intel Core i9 pro-
cessor. We used k = 3 Kraus terms in the reconstruction
even though we actually only needed to have k = 1 since
the SNAP and displacement operations are unitary.

To study the e↵ects of the number of Kraus opera-
tors in our ansatz, noise, and amount of data, we turn
to the reconstruction of random DV quantum processes,
i.e., processes acting on n qubits. First, in Fig. 3(a), we
quantify the impact of Gaussian measurement noise (re-
lated to the number of measurement samples [42]) and
the number of Kraus operators. We follow the direct
QPT approach of Ref. [42], where the 6n probes and
6n measurements are given by the tensor products of
the eigenstates to the Pauli matrices {‡x, ‡y, ‡z}. We
compare our results on DV QPT against the hyperplane-
intersection projection method of [42] and a CS imple-
mentation using convex programming [44].

We find that all three methods perform similarly as a
function of the measurement noise ‘ with the assumption
of a full set of k = 4n Kraus operators for a full-rank
process. As we reduce the number of Kraus terms in our
ansatz, the fidelity saturates at lower values for lower ks,
which is expected as our approximation is not expres-
sive enough to represent the full-rank process with fewer
Kraus terms. In a practical setting, we may only be able
to reach a certain fidelity with a finite number of mea-
surement shots (non-zero ‘). Interestingly, using more
Kraus terms in such situations may not be helpful.

In most realistic cases, where we might be interested in
implementing quantum gates which are unitary or near-
unitary processes, CS-QPT methods can work with very
little data [44]. Nevertheless, we benchmark for full-rank
processes in a two-qubit system to demonstrate the gen-
eral applicability of our approach. In Fig. 3(b), we com-
pare the performance of GD-QPT against CS with a fixed

noise level ‘ = 10≠2 for full-rank (k = 16) Kraus opera-
tors using a random subset of probes and measurements
(a fraction “ of the total). We observe that for two-qubit
processes in this informationally incomplete regime, GD-
QPT achieves similar performance as CS — both needing
less than half of the total data. In the Supplementary
Material [73], we also present results for low-rank pro-
cesses. By using a smaller number of Kraus operators,
we can reconstruct processes in a larger Hilbert space (5-
qubit DV systems and CV processes with a Hilbert-space
cuto↵ of 32).

There could be further possible improvements with
lower noise (higher number of shots) and tuning of the hy-
perparameters such as regularization, learning rate, and
number of Kraus operators. It is also important to note
that for such reconstructions, assessing the uncertainty
of the reconstruction becomes important since we cannot
guarantee if we have enough data for a unique estimation
of the process [95].

The PLS method was omitted from Fig. 3(b) since it
was not clear how to adapt it to non-informationally com-
plete data. However, PLS can be used to reconstruct pro-
cesses with more qubits, where CS has di�culties. The
dimension of the matrix S in CS is 62n ◊42n for the prob-
abilities and the flattened Choi matrix. Therefore, run-
ning convex optimization programs even for a three-qubit
process reconstruction with CS is challenging, requiring
several hours of computational time [44]. In contrast,
GD-QPT can easily tackle five-qubit processes, similar
to PLS. Further, due to the restricted number of Kraus
operators, GD-QPT iterations are faster than PLS for
larger Hilbert spaces.

In Fig. 4, we compare the number of iterations for the
convergence of GD-QPT against PLS for random 5-qubit
DV processes. The results show that GD-QPT converges
in a similar number of iterations as PLS, but is faster per
iteration due to the smaller number of Kraus terms con-
sidered. The most expensive step in the PLS technique,
the CP projection, requires a diagonalization involving
the eigendecomposition of the 4n ◊ 4n-dimensional Choi-
matrix estimate. The time taken for each step is limited
by the complexity (cubic) of this eigendecomposition. In
comparison, the most expensive step in GD-QPT is the
retraction involving the inversion of smaller matrices of
dimensions k2n ◊ 2n, where the number of Kraus terms
k π 4n. We provide the data and code for all results
along with our implementation of GD-QPT, PLS, and
CS in Ref. [96].
Conclusion and outlook. In this Letter, we introduced

a simple yet powerful technique for QPT using gradient-
based learning of Kraus operators — GD-QPT. Our ap-
proach can reconstruct both CV and DV processes for
Hilbert spaces of dimension at least 32. We benchmarked
GD-QPT against the recently proposed PLS algorithm
as well as CS. Using randomly generated processes, we
showed that for low-rank processes, estimating Kraus op-

Random two-qubit processes 
of full rank
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k = 16
GD-QPT matches CS in its specialty 
— dealing with little data
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CS cannot handle larger systems, but PLS can 
— GD-QPT does at least as well as PLS here
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Figure 4. Comparing computational time for GD-QPT (red)
and PLS (blue). (a) Loss in GD-QPT after each update step
for random 5-qubit DV processes of rank r = 3, using various
numbers of Kraus terms. Each such step for GD-QPT takes
a batch of 256 data points from a total of 65 ◊ 65 expecta-
tion values, computes the loss and its gradient, and performs
an update on the Stiefel manifold. The processes have rank
r = 3. (b) Time taken for each GD-QPT iteration and the
most expensive step in PLS, the CP projection, as a function
of Hilbert-space dimension with random processes [73]. In
Ref. [42], around 300 iterations were needed for convergence
of the CP projection when n = 5.

erators directly gives fidelities similar to PLS and CS for
the same amount of Gaussian noise in the data.

Further, we showed that our approach performs similar
to CS in the regime of informationally incomplete data,
yet works for a larger number of qubits than CS. In this
regard, we achieve the goal outlined in Ref. [44], where
the convex-programming-based CS-QPT technique suf-
fered from numerical time and memory complexity issues.
Our simple approach alleviates some of the numerical is-
sues by considering QPT as a learning problem with a
limited number of Kraus operators as a model. Using
data, we learn the Kraus operators through gradient-
based optimization on the Stiefel manifold.

Since the size of the Kraus operators scales exponen-
tially with the system size, a future direction of work
could be to replace the Kraus representation with other
e�cient (approximate) models for a quantum process,
e.g., tensor networks [56]. Benchmarking against tech-
niques such as shadow tomography [63, 64] could reveal
if this approach can strike a balance between tackling
QPT for larger quantum systems and having an explicit,
interpretable representation for the process.

It would be interesting to understand why the gradient-
based approach works with so few data points and noise
in the data. In this regard, the quantum-inspired low-
rank Kraus decomposition technique partial trace regres-
sion [77] can be relevant, as it shows that low-rank re-
constructions are possible with a small data set. A fur-
ther, crucial direction for future work is to formulate
fast uncertainty estimation techniques for the reconstruc-
tion similar to existing ideas [95, 97]. The role of both
aleatoric (statistical) and epistemic (lack of data) uncer-
tainties can be further studied to improve on the recon-
struction and guide real experiments [98].
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What about neural networks?
We trained a feed-forward neural network to output 
Kraus operators optimising agreement with data

Random two-qubit processes of rank
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Wigner tomographyApply process

Output dataTarget process

Prepare
coherent state

Initial state

FIG. 1. Protocol for the csQPT. a Gate sequence for
the process-tomography protocol. The probe states are co-
herent states in a 5 × 5 grid of complex displacements ↵i

(see the left plot in panel b). The process E is applied to
each probe state. Finally, the cavity state is measured us-
ing Wigner tomography. The Wigner tomography consists
of a cavity displacement D(�j), unconditional qubit ⇡

2 -pulse,
conditional phase evolution C⇡, and another qubit ⇡

2 -pulse
followed by a readout. b Wigner functions at each step of
the protocol. (Middle) shows the ideal target result of ap-
plying the process E to the coherent-state probe visualized in
(Left). (Right) The data points are the values of the Wigner
function in a 21 × 21 grid of complex-displacements �j . The
Wigner-function measurements are repeated for each input
probe.

versatile control of quantum states [14, 20–23]. We im-
plement csQPT on a system consisting of a single-mode
3D superconducting �/4-cavity [24, 25] and an ancilla
transmon qubit [26]. The transmon qubit is used to pro-
vide a nonlinear control element which is necessary in
order to control the harmonic energy levels of the cavity,
as well as provide means to characterize the cavity states
through direct Wigner tomography [20]. The transmon
qubit with its own readout resonator is fabricated on a
sapphire chip, and the chip is inserted into the cavity,
where the qubit and the cavity are capacitively coupled.

To perform csQPT, we run experimental sequences
consisting of three steps [Fig. 1(a)]. First, we prepare
the cavity in a coherent state |↵ii – our input probe. We
create coherent states by passive thermalization to the
ground (vacuum) state |0i followed by a displacement
operation D(↵i). Next, we apply the quantum process
E that we intend to characterize to the input state. Fi-
nally, we measure a displaced parity operator with the
assistance of the ancillary qubit. To do so, we apply
a displacement D(�j) to the cavity and then measure
its photon parity by performing a Ramsey measurement
that maps the parity to the �z axis of the qubit [20].
Averaging over this sequence and varying �j to map dif-
ferent regions of the phase space gives a direct measure-
ment of the Wigner function W (�) of the coherent state
|↵ii, after it has been acted upon by the gate. We re-

peat this procedure for a rectangular 5 ⇥ 5 grid array
of coherent-state probes spanning from �1.5 � 1.5i to
1.5 + 1.5i [Fig. 1(b)]. The amplitude of the coherent-
state probes determines the maximum photon number
that is populated and thereby sets a limit on the size
of the cavity Hilbert space in which we can reliably re-
construct the process. We find our choice of the probe
amplitude to be su�cient to reconstruct the process up
to Fock state |5i [27].
The reconstruction of a process representation for E

is performed using a gradient-based optimization that
learns the Kraus representation of the process [19]. The
Kraus operators are learned by minimizing a loss function
that is the squared error between the measured Wigner
data points and the corresponding Wigner points pre-
dicted by the reconstructed Kraus operators. Our op-
timization procedure is constrained to the manifold of
completely positive and trace preserving quantum oper-
ations with appropriate restrictions on the Kraus opera-
tors [27]. Reconstructing the process at the Kraus level
allows us to limit the size of the process representation
by restricting the number of Kraus operators. We there-
fore limit our reconstruction to a low rank, so that we
can learn the dominant process channels without having
to reconstruct the full-rank process. Additionally, the
noise in the data may not allow the reconstruction of
all the loss channels even if more Kraus operators are
introduced. With this method, we can reconstruct the
Kraus operators directly without an intermediate step of
reconstructing the density matrices of the output states.
We test csQPT on a quantum logical gate that swaps

the population of the states |0Li and |1Li, i.e., a logical
X-gate (Fig. 2). We choose the binomial encoding

|0Li = |2i,
|1Li = 1p

2
(|0i+ |4i),

which is the lowest-order binomial code that can be
corrected for the single-photon loss error in the cav-
ity [28]. We implement the gate as a series of displace-
ment D(↵) and Selective Number-dependent Arbitrary
Phase (SNAP) operations S(✓) [29]. These two opera-
tions provide universal control of the cavity states [30].
We numerically optimize the gate sequence [31] and
the pulse envelopes following the method described in
Ref. [23], which was shown to reduce the gate length
while making the pulses more robust against variations
of the system parameters. In SNAP gates, the qubit
starts and ends in the ground state with high probabil-
ity regardless of the initial state of the cavity, so that the
same qubit becomes available for the Wigner-tomography
measurement protocol. Previously, SNAP and displace-
ment operations had only been used in the context of
state preparation. Here, we show that these operations
can also be used to e�ciently implement logical gates.
In particular, we implement the X-gate with only three
SNAP gates and 4 displacements. Compared to gate im-
plementations based on fully numerical optimal control,

3

FIG. 2. X-gate in binomial encoding. a The gate is
defined by mapping the six cardinal states in the encoded
subspace to their respective targets. The gate is defined only
for the encoded subspace, but we can characterize it gener-
ally by analyzing its action on the full Hilbert space and not
just the cardinal states. b The X-gate for the cavity-encoded
logical state is composed of three SNAP operations and four
displacement operations.

in which the transmon-cavity composite system is driven
simultaneously [14, 28], separate gates on the cavity and
on the transmon are more easily parameterized, and the
e↵ects of the individual operations are more transpar-
ent [23].

We characterize the X-gate by running the process to-
mography sequence and process reconstruction described
above. From the obtained Kraus operators, we construct
the population transfer matrix (Fig. 3). The elements of
the matrix describe the population distribution of the fi-
nal state in a chosen basis, given one of the basis states
was prepared as the initial state. Instead of the usual
Fock basis, the matrix is presented in a basis given by
{|0Li, |1Li, 1p

2
(|0i�|4i), |1i, |3i, |5i}, which transparently

shows the e↵ect on the logical basis vectors. In this repre-
sentation, we identify the X-gate in the logical subspace
in the upper-left block of the population matrix. By in-
specting the matrix entries we see that the swap oper-
ation between |0Li and |1Li is successful, with a popu-
lation transfer between 92% and 93% and a population
loss on the order of 7%. The elements underneath the
logical states describe population leakage outside of the
computational subspace. For example, when preparing
|0Li, we observe that most of the population loss is due
to leakage to states outside of the computational sub-
space. The largest leakage is into 1p

2
(|0i � |4i), which

is one of the no-jump evolution error states of the bino-
mial code [32]. Similarly, the largest leakage from |1Li is
into |1i and |3i, which are the main error states of the
binomial code.

The population transfer matrix does not describe the
coherence between the chosen basis states. As such, it

FIG. 3. Population transfer matrix. The upper-left block
represents the logical subspace, where we can identify the
X-gate that swaps states |0Li and |1Li. The columns corre-
spond to the input states, while rows correspond to the output
states.

only o↵ers a partial representation of the quantum pro-
cess. To provide a complete description of the process E ,
we use a generalization of the Pauli transfer matrix from
two-level systems to d-level systems. We refer to this
generalization as the Gell-Mann transfer matrix [27]. We
show the transfer matrix in Fig. 4, where we have only
included the elements that couple to the logical states up
to a Fock state |5i. In the upper-left corner of the Gell-
Mann transfer matrix, we can identify a Pauli-transfer-
matrix-like block of an X-gate for the two-level logical
subsystem. In Fig. 4b, we present the experimental Pauli
transfer matrix that is calculated from the Kraus oper-
ators alongside the simulated and ideal transfer matri-
ces. Coherent errors within the logical subspace appear
as o↵-diagonal elements in the Pauli transfer matrix for
this particular gate. The detailed information of the leak-
age out of (into) the logical subspace is given by the o↵-
diagonal blocks below (next to) the computational sub-
space [33].
We can now calculate the average gate fidelity [34] be-

tween the reconstructed process E and the targeted logi-
cal gate U in the d = 2-dimensional logical subspace, also
considering leakage, as

Fg(E , U) =
dFpro(E , U) + 1� LL(E)

d+ 1
. (1)

Here Fpro(E , U) is the process fidelity, which can be writ-
ten down using any representation of the process E , e.g.,
the Kraus operators [1], the Choi matrix [35], or the Pauli
transfer matrix [36]. The average leakage rate is defined
as LL(E) =

R
d LE(| Lih L|) = L(E( ILd )) [37], where

L(⇢) = 1 � Tr[IL⇢] quantifies the leakage from the log-

Enabled extensive characterization at Chalmers of a logical 
gate on a qubit encoded in states of a harmonic oscillator

M. Kervinen et al., Physical Review A 110, L020401 (2024)



Summary for GD-QPT

We have applied gradient descent on the Stiefel manifold to the 
problem of reconstructing quantum processes from measurement data

GD-QPT combines the best of two worlds — it can both reconstruct 
processes from little data and in relatively large Hilbert spaces

Neural networks don’t seem to improve on GD-QPT

S. Ahmed, F. Quijandría, and A. F. Kockum, Phys. Rev. Lett. 130, 150402 (2023)
Code available on GitHub: quantshah/gd-qpt
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Nobel bonus: Measuring the state of photoelectrons

H. Laurell, …, S. Ahmed, …, A. F. Kockum, Anne L’Huillier, and D. Busto, arXiv:2309.13945 (2023)
to appear in Nature Photonics; code to be made available

Figure 2: Experimental results obtained with the KRAKEN protocol in the case of photoion-
ization of helium atoms. A) Photoelectron spectrograms are acquired for different values of
�! (from left to right: h̄�! = 0, 41, 61, 80, 98, 117, 134 meV). B) Energy-resolved oscillation
amplitude A�! for the different spectrograms. The shaded area indicates the uncertainty of the
fit (one standard deviation). C) Density matrix obtained by inserting the oscillation amplitudes
for each �! at the corresponding position in an initially empty density matrix. Dark blue areas
correspond to regions of the density matrix that are not reconstructed.
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Need priors to 
fill out the full 
density matrix 
correctly from 
data — Bayesian 
estimation
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Figure 4: Effect of spin-orbit interaction on the photoelectron quantum state in argon. A)
Schematic representation of the ionization process. Absorption of an XUV photon promotes an
electron from the ground state of a neutral argon atom (3p6) to the continuum, ionizing the atom.
Spin-orbit interaction, splits the ionic ground state into two mutually orthogonal ionic states,
3p5 2P3/2 (red) and 3p5 2P1/2 (blue), separated in energy by �✏so. Due to the conservation of
energy, the resulting photoelectron spectrum is composed of two peaks, shown in red and blue,
associated to the 2P3/2 and 2P1/2 states respectively, and spaced in energy by �✏so. The shaded
area indicates the spectral region where the two peaks overlap. B) Experimentally reconstructed
quantum state of a photoelectron emitted from an argon atom.
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Spin-orbit interaction in 
argon reflected in the 
photoelectron state

Ionizing atoms, adding a bichromatic IR 
probe, vary detuning to extract some 
diagonals in the photoelectron density matrix 
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Figure 1: Principle of the KRAKEN technique. A) Energy diagram of the KRAKEN scheme.
A short XUV pulse ionizes the target (purple arrow) and populates a broad superposition of
continuum states. Additional absorption of a bichromatic IR photon with frequency compo-
nents !1 (orange arrow) and !2 (red arrow) to a final continuum state with energy ✏f induces
interference between intermediate continuum states with energy ✏1 and ✏2. ✏g and Ip indicate
respectively the ground state and the ionization threshold. B) Schematic representation of the
experimental setup. An ultrashort XUV pulse and a delayed bichromatic IR pulse are combined
and focused in an atomic gas jet. The experiments rely on measuring the kinetic energy of
the photoelectrons generated from the interaction with the XUV and IR pulses using a mag-
netic bottle electron spectrometer (MBES), as a function of the delay between the XUV and
the bichromatic probe. C) Example of a bichromatic IR pulse used in the experiment. The red
arrow indicates that only the frequency !2 is changed in the different measurements, while the
frequency !1 is fixed.
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Quantum state tomography with gradient descent
3 parameterizations: Cholesky decomposition, Stiefel manifold, projective normalization

A. Gaikwad, M. S. Torres Hernandez, S. Ahmed, and A. F. Kockum, in preparation (2024)

Able to control the rank of the ansatz in all three

6

and discarding the rest. The step size –k is deter-
mined according to the RGD algorithm as: –k =
ÎPTk (Gk)Î2

F
/ ÎA (PTk (Gk))Î2

2 with Î · ÎF being the
Frobenius norm. The functionality and additional techni-
cal details of the nonconvex-RGD algorithm are provided
in [67]. The corresponding Python code for implementing
nonconvex-RGD for QST is available here [81].

CGAN-QST:

C. Data sets for benchmarking

Quantum states: We use di↵erent types of quantum
states to benchmark GD-QST algorithms. This includes
i) set of entangled states SE of the Choi form described as

SE =
Ó

|�Í = 1Ô
k

q
k

m=0 |mÍ ¢ �|mÍ, � œ CPTP map
Ô
,

ii) set of pure states (SP ), iii) set of mixed states with
varying rank (SM ) and two special states, including,
iv) Hadmard state |�HÍ = [(|0Í + |1Í)/

Ô
2]¢N and v)

GHZ state |�GHZÍ =
#!

|0Í¢n + |1Í¢N
"

/
Ô

2
$
. Note that,

benchmarking GD-QST on the states |�Í œ SE also val-
idates the GD-QPT of channel �. This is a standard
example of ‘ancilla-assisted QPT’[82]. Furthermore, in
addition to the density matrix reconstruction and state
fidelity calculation we also demonstrate how well GD-
QST algorithms compute several relevant quantities like
logarithmic negativity and purity to quantify entangle-
ment and mixedness respectively.

Measurement operators (observables): The significance
of selecting an appropriate set of measurement opera-
tors {�i} for QST has been thoroughly examined in [11]
where the optimal set {�i} is defined based on achiev-
ing the lowest condition number of the sensing matrix
A, provided the set {�i} is informationally complete.
This choice enhances the robustness of the QST protocol
against errors. Therefore, inspired by this choice together
with current experimental platforms, we choose the N -
qubit Pauli matrices as our set of near-optimal measure-
ment operators[11]: � = {I, ‡x, ‡y, ‡z}¢N . However, the
proposed GD-QST algorithms are versatile and can op-
erate with any choice of measurement operator set.

III. RESULTS

In this section, we assess the performance of the GD-
QST algorithms in di↵erent scenarios through numeri-
cal simulations on multi-qubit systems. Specifically, we
compare the CD, SM, and PN parameterizations, and
where applicable, benchmark them against several ex-
isting QST methods, including the convex optimization
algorithm using CVX, APG-MLE, nonconvex-RGD, and
CGAN-QST. In Sec. III A, we analyze the time com-
plexity of GD-QST algorithms by examining the number
of iterations and time per iteration needed to reconstruct
the full density matrix with su�ciently high state fidelity.
Moreover, we also demonstrate the advantage of selecting

an ansatz with an appropriate rank, which leverages prior
knowledge about the target density matrix such as purity
or rank. This approach enables more e�cient and faster
recovery of density matrices by optimizing the ansatz ac-
cordingly. We also highlight fast, high-dimensional pure
state tomography, a special case of rank-1 ansatz, which
is particularly relevant for quantum computing and infor-
mation processing experiments. In Sec. III B, we show
the e�cacy of GD-QST algorithms by implementing on
significantly reduced data set and demonstrate fast, high-
quality reconstruction of full density matrix. Lastly, in
Sec. III C, we demonstrate the noise robustness of GD-
QST algorithms by applying them to noisy data sets ob-
tained from Depolarizing and Gaussian noise channels.

A. Time complexity

Figure 1. Full rank state and pure states time complexity,
max iteration 800

This section evaluates the computational time required
for full state reconstruction using the GD-QST meth-
ods described in Sec. II, for systems containing up to
7 qubits. Figure 1 presents the performance of the GD-
QST algorithm under three di↵erent parameterizations:
CD (teal), SM (orange), and PN (green), and compares
them to the CVX tool (black), a Python-based convex
optimization library. Figures 1(a) and 1(b) display re-
sults for full-rank and pure states, respectively, with the
x-axis representing the number of qubits and the y-axis
indicating the total computational time (in seconds, on
a logarithmic scale) required to achieve state reconstruc-
tion with fidelity greater than 0.99. A maximum of 800
iterations is used in all cases to ensure high convergence.
For full-rank states (Fig. 1(a)), the total time is av-

eraged over 30 random full-rank states, using a full-
rank ansatz to reflect maximum time complexity. CVX
demonstrates superior performance for smaller systems
(up to 4 qubits); however, for higher-dimensional sys-
tems (5 qubits and beyond), the GD-QST methods with
CD and SM parameterizations outperform both PN and
CVX. Notably, the PN algorithm is excluded for systems
with more than 5 qubits, and SM and CVX are excluded
beyond 6 qubits due to their failure to converge within
a reasonable timeframe. GD-QST with the CD param-
eterization emerges as the most e↵ective algorithm for
high-rank state tomography in larger systems, with an

Here comparing to convex optimization; 
other benchmarks in progress
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sure the average computation time required to achieve
a fidelity greater than 0.999 in each case. The numeri-
cal results indicate that selecting an appropriate ansatz
rank, shown on the x-axis, significantly reduces recon-
struction time, as depicted on the y-axis. In contrast,
using a higher-rank ansatz o↵ers no additional informa-
tion and unnecessarily increases both computation time
and cost. This feature of being able to select an appro-
priate ansatz with desired rank clearly demonstrates the
the advantage over standard QST methods where opti-
mization space is full rank density matrix.

Figure 3. 5q-system, (a) average over 30 random states of
given rank, (b) average time (sec) per iteration calculated over
30 random states, cholesky triangular does not reach 0.99 so
not plotted

B. Dealing with informationally incomplete data sets

In this section, we evaluate the performance of GD-
QST algorithms when applied to reduced data sets. This
analysis is particularly relevant from an experimental
standpoint, where acquiring tomographically complete
and exponentially large data sets becomes impractical
for high dimensional systems. The convex optimization
method given in Eq.3 with non-zero ‘ is a widely regarded
QST protocol for the sparse reconstruction of density ma-
trices using significantly reduced data sets. However, as
shown in Fig.1, the computational time required to solve
CVX optimization problem grows exponentially with the
size of the system, making it experimentally e�cient but
computationally ine�cient for moderately sized systems.
In Fig.4(a) and 4(b), we numerically demonstrate the
performance of GD-QST algorithms using data sets of
varying sizes (on x-axis) for two cases: (i) a 5-qubit Had-
mard state[67], and (ii) a 5-qubit maximally entangled

GHZ state, respectively.

Figure 4. QST of 5-qubit (a) Hadmard state and (b) GHZ
state using reduced randomly chosen data sets of varying
sizes.

In Fig.4, we show that both states can be e�ciently re-
constructed using substantially reduced data sets across
all parameterizations, as compared to the full data set
size of 45 = 1024. For the Hadmard state, the CD algo-
rithm performance much better, requiring a data set size
as small as ¥ 150 to achieve high-fidelity reconstruction,
as compare to other methods which require ¥ 400 data
points. For the GHZ state, all methods achieve accurate
reconstruction with a reduced data set size of ¥ 400, ex-
cept for the PN parameterization, which fails to produce
good reconstruction results. It is important to note that
the numerical results in Fig.4 are specific to the Had-
mard and GHZ states and cannot be generalized to other
quantum states, as the data requirements for QST pri-
marily depend on the characteristics of the target state.
Low-rank and su�ciently sparse states typically require
fewer measurements, whereas high-rank and less sparse
states demand more extensive data. Nevertheless, we
demonstrate that GD-QST algorithms can perform full
QST e�ciently, even when dealing with informationally
incomplete data sets, making it experimentally as well as
computationally practical.

C. Robustness to noise

In this section, we analyze the robustness of our GD-
QST algorithm when applied to noisy datasets. In practi-
cal scenarios, experimental data often becomes corrupted
due to various factors such as decoherence processes,
noisy channels, imperfect measurements, statistical limi-
tations, and hardware imprecision, leading to information
loss during the state reconstruction process using tra-
ditional tomography methods. In these situations, the
reconstruction algorithm must be resilient to errors in
the data to recover information accurately and precisely.
Here, we conduct a numerical analysis of the GD-QST
algorithm by applying it to a noisy-datasets with custom-
added Gaussian and Depolarizing noise. Here, we partic-
ularly focus on the quality of reconstruction rather than
time complexity.
We also emphasize that, pure states are particularly

5 qubits:



Outline
• Part 1: Quantum state tomography with 

conditional generative adversarial networks 

• Part 2: Quantum process tomography with 
gradient-descent learning of Kraus operators

• Bonus slides: Photoelectrons and GD-QST 

• Summary



Summary and outlook
• We have tackled quantum state tomography and quantum process 

tomography with machine learning and gradient descent
• Improvements over state-of-the-art methods when it comes to 

computation time, amount of data needed, handling of noise, …
• Important design choice: build in physics knowledge in the state/

process representation
• Ongoing/next: revisit QST without NNs, approximate state/process 

representations to handle larger systems, elucidate error bars, …
• Look for applications beyond quantum computing!

S. Ahmed, C. Sánchez Muñoz, F. Nori, and A. F. Kockum, Phys. Rev. Lett. 127, 140502 (2021)
S. Ahmed, C. Sánchez Muñoz, F. Nori, and A. F. Kockum, Phys. Rev. Res. 3, 033278 (2021)
S. Ahmed, F. Quijandría, and A. F. Kockum, Phys. Rev. Lett. 130, 150402 (2023)
H. Laurell, …, S. Ahmed, …, A. F. Kockum, A. L’Huillier, and D. Busto, arXiv:2309.13945 (2023)
A. Gaikwad, M. S. Torres Hernandez, S. Ahmed, and A. F. Kockum, in preparation (2024)
Code available on GitHub: quantshah/qst-cgan and quantshah/gd-qpt

@quantshah
@AntonFKockum



Reconstructing mixed states
33

Figure 20. Reconstruction of a mixture of cat(– = 2, S =
0, µ = 0) and fock(n) states (the mixture is constructed using
the same formula as in Fig. 16) with a reduced number of
measurements. (a, b, c) Reconstruction fidelities for ranks 2,
3, and 4, respectively, for QST-CGAN (red) and iMLE (blue).
The solid lines show the mean and the shaded regions show
one standard deviation from the mean. The fidelity shown
is the one reached after a certain convergence criterion set
by a tolerance value. We choose a tolerance such that if the
average fidelity in 100 iterations does not change by 10≠5 over
5 steps (i.e., 500 iterations) we stop the reconstruction.

ing framework was motivated by an analysis of how stan-
dard loss functions, e.g., L2 or KL-divergence loss, per-
form for di↵erent states and noise in the data. We found
that some of these standard loss functions resulted in
good performance in the absence of noise, while other
loss functions gave better performance in the presence

of certain types of noise, but none of the loss functions
led to a consistently good performance in a general set-
ting. However, we showed that the QST-CGAN method
is flexible and can easily adapt to di↵erent noise, states,
or measurement settings. We ascribe this flexibility to
the ability of the Discriminator to learn a loss function
suited to the situation at hand.

We showed that the QST-CGAN-based reconstruction
can be up to two orders of magnitude faster than MLE
methods, counted in the number of iterations required
for reconstruction. Although the actual time for each
iteration in the QST-CGAN can depend on the design
of the neural networks, this presents a significant advan-
tage for data post-processing during tomography. We
also note that the neural-network based method seems to
be performing non-trivial operations during reconstruc-
tion, e.g., applying a quantum operation to almost in-
stantaneously jump from an orthogonal state to the cor-
rect state. This suggests that the neural networks learn
to represent the state in a way that is well suited for
the problem. Alternatively, the use of the Adam op-
timization might explain how the neural-network-based
reconstruction is so fast, in a similar way as accelerated
gradient-based methods [117].

Having first benchmarked the reconstruction of pure
states with no noise, we next considered how the QST-
CGAN method can be augmented further to deal with
noise in the data. We leveraged the flexibility of having a
loss function that combines the Discriminator loss with
a simple L1 loss, since our objective is simply to make the
generated data look like the training data. For the case
of additive Gaussian noise of up to 5% of the maximum
signal value, our QST-CGAN method performs denois-
ing and reconstruction much better than MLE methods
without needing any change in the architecture or loss
function. Gaussian convolution noise corresponding to
having a thermal state with mean photon number nth = 5
in a linear detection scheme was also tackled quite easily.
The QST-CGAN only required the expected background
noise as input which was added as special noise layers to
the Generator network.

Lastly, we showed that the QST-CGAN method clearly
outperforms MLE methods also when reconstructing
mixed states. The QST-CGAN proved superior not only
in terms of how few iterations it needed to reach high
reconstruction fidelity, but also in terms of how little in-
put data it required to reconstruct the state well. For a
cat state, the QST-CGAN required almost two orders of
magnitude fewer data points than iMLE (as well as an
RBM-based reconstruction shown in Ref. [85]) to achieve
high reconstruction fidelity. It has been demonstrated
that iMLE method can become stuck in cycles for some
choices of input data, but our QST-CGAN method works
well even with random sets of measurements generating
the input data for the examples considered.

In conclusion, by connecting ideas of generative and
discriminative modelling to quantum state classification
and reconstruction, we have attempted to bridge the gap

ρ′ = 0.8 * cat + (0.2/(r − 1))
r−2

∑
n=0

fock(n); r = 2,3,...

 Mixed states (higher rank) are harder to parameterize



Single-shot reconstruction
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Figure 3. QST-CGAN performance. The data is the Husimi
Q function of the cat state in Fig. 2(b). (a) Reconstruction fi-

delity F (fl, flÕ) = tr
!Ô

flflÕÔfl
"2

as a function of iterations for
the QST-CGAN (red), iMLE (blue), and APG-MLE (dashed
black). We use 1024 displacements — in a 32 ◊ 32 grid. The
weights of the QST-CGAN and the starting density matrix of
the iMLE are randomly initialized. The APG-MLE runs 13 it-
erations of conjugate-gradient line search from the maximally
mixed state before switching to APG. The solid lines show
the mean F for 100 runs; the shaded areas show one standard
deviation from the mean. (b) Average F as a function of the
number of —. For each number, 10 sets of displacements are
randomly selected from within a disk with |—| Æ 5 for the
state in Fig. 2. We show the average F reached after 1000
iterations for QST-CGAN and iMLE, and 10, 000 iterations
for APG-MLE.

matrix for APG-MLE. We find that the QST-CGAN con-
verges to a fidelity > 0.999 in about two orders of magni-
tude fewer iterations than the MLE methods. Note that
the choice of network architecture and training parame-
ters will a↵ect the speed of convergence and the compu-
tational cost of one iteration for the QST-CGAN.

Next, we investigate, in Fig. 3(b), how many data
points are required as input to reach high reconstruc-
tion fidelity. We find that the QST-CGAN approach
starts outperforming the MLE methods around N = 32
data points and reaches fidelities close to unity already
with < 100 data points, while the MLE methods require
≥ 1000 data points to attain good fidelity (an RBM-
based reconstruction of a similar state also requires thou-
sands of data points to reach high fidelity [68]). Note that
the rank r = 1, since fl is a pure state.

Experimental state reconstruction from parity measure-
ments. The benchmarking of the QST-CGAN so far
has been on simulated data. We now demonstrate, in
Fig. 4, that our QST-CGAN can reconstruct a noisy
state from experimental data. In this particular exper-
iment, a superconducting transmon qubit was used to
generate a Wigner-negative state in a resonator [103], by
applying a selective number-dependent arbitrary phase
(SNAP) [104, 105] of fi to |0Í and |1Í of a coherent
state |– = 1Í. Despite significant state-preparation-and-
measurement (SPAM) noise, the QST-CGAN still man-
ages to reconstruct the data well from measurements of
the Wigner function, even when using only ≥ 15 % of the
measurement data.

Figure 4. (a) Reconstruction of a Wigner-negative bino-
mial [89] state by a QST-CGAN from (b) noisy experimental
data. Inset: the target state. The reconstruction uses 4281
data points of the Wigner function measured for — inside the
dashed circle. The data outside the circle, e.g., the Wigner-
negative region in the top left, is not as reliable due to mea-
surement calibration problems at higher photon numbers. We
also attempt reconstruction with a subset of the data points
inside the circle, and find that ≥ 600 data points are enough
to achieve a fidelity ≥ 0.9 with the full reconstruction.

Figure 5. Single-shot reconstructions of 200 cat states
(cf. Fig. 2, |–| œ [1, 3], up to six coherent states in superpo-
sition), using a pre-trained QST-CGAN. (a) Fidelity distri-
bution of the reconstructions after training on a 32 ◊ 32 grid
of data points. (b) Average fidelity (solid line) within one
standard deviation (shaded region) after further iterations.

Single-shot reconstruction with pre-training. We now
pre-train the QST-CGAN on a data set with several thou-
sand cat states similar to Fig. 2 by selecting |–| œ [1, 3]
randomly with up to six coherent states in superposition.
As shown in Fig. 5(a), this pre-trained network is then
able to perform single-shot reconstructions for di↵erent
cat states with a high average fidelity ≥ 0.98. It turned
out to be di�cult to find a learning strategy enabling
further improvement of the fidelity with just a few more
iterations for each state, but with tens of iterations a clear
improvement is observed [Fig. 2(b)]. The pre-trained net-
work thus does not have to iterate many times from an
initial random guess for each state, as is the case for the
results in Fig. 3 and most other reconstruction methods
in use today, resulting in a four orders of magnitude faster
reconstruction than in Fig. 3(a).
Conclusion and outlook. In this Letter, we have

adapted the CGAN architecture for use in quantum state
tomography. The adaption relies on the introduction

Training the QST-CGAN on simulated data from a certain type of states 
allows it to directly output a density matrix for new data without iterating
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Figure 13. Reconstruction of a binomial(S = 2, N = 4, µ = 0) state in the presence of additive Gaussian noise. (a) The
Husimi Q function of the state after addition of Gaussian noise at each —. The random noise is drawn from a standard normal
distribution with ‡ = 0.05 and added after the data has been normalized to the range [0, 1]. (b, c, e, f) Reconstructed Husimi Q
functions, without noise added by the GaussianNoise layer, using standard loss functions for the Generator: L1, cross-entropy,
L2, and KL divergence, respectively. (d) Reconstructed Husimi Q function using APG-MLE. (g, h, i) Reconstructed Husimi
Q functions using our QST-CGAN with three di↵erent weights of the L1 loss set by ⁄L1. (j) Photon-number occupation
probabilities for the data without noise added. (k, l, m, n, o, p, q, r) Photon-number occupation probabilities extracted
from the reconstructed density matrices corresponding to the Husimi Q functions in (b, c, d, e, f, g, h, i), respectively. In
all reconstructions using neural networks, the hyperparameters for learning were kept the same. For each method, including
APG-MLE, the calculations were stopped after 10,000 iterations.

to apply when such stochastic noise layers are present in
the networks. Nevertheless, methods such as the repa-
rameterization trick [12] can still make it possible to learn
the noise. However, we have not explored this possibility
further in this work.

Looking at the reconstructed Husimi Q functions in
Fig. 13(b)-(i), it appears that the Generator with L1 or
L2 loss and the QST-CGAN with ⁄L1 = {0, 1, 10} outper-
form the Generator with cross-entropy or KL divergence
loss, and clearly outperform the APG-MLE implementa-
tion. However, a small di↵erence in the appearance of
the Husimi Q function does not necessarily mean that
two states are similar (compare the orthogonal states de-
picted in the insets of Fig. 12). We therefore plot, in
Fig. 13(j)-(r), the photon-number occupation probabili-
ties corresponding to the noiseless data and the recon-

structions in Fig. 13(b)-(i). The noiseless data has non-
zero probabilities for 0, 3, 6, and 9 photons. This is only
reproduced well by the Generator with L1 or L2 loss
and the QST-CGAN with ⁄L1 = 1. The QST-CGAN
with ⁄L1 = 1 also reproduces the equal probabilities of 6
and 9 photons in the data better than the QST-CGAN
with ⁄L1 = {0, 10}.

To further investigate how di↵erent loss functions af-
fect the neural-network performance in the presence of
additive Gaussian noise, we plot, in Fig. 14, how the
reconstruction fidelity develops, for all reconstruction
methods, as a function of the number of iterations for 30
di↵erent realizations of the noise in the data (the same
binomial state as in Fig. 13). The average reconstruc-
tion fidelities and standard deviations are summarized in
Table V, where we exclude the reconstructions when the

Data with additive 
Gaussian noise, e.g., 
from insufficient 
averaging

Same noise level 
included in the 
noise layer of the 
QST-CGAN

The discriminator 
adapts well
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