SOLVING 2D QUANTUM MATTER WITH NEURAL QUANTUM STATES

Markus Heyl

University of Augsburg Center for Electronic Correlations and Magnetism (EKM)

ML4QT 11/06/2024

Ao Chen Augsburg

University of Augsburg Center for Electronic Correlations and Magnetism

European Research Council Established by the European Commission

INTERACTING 2D QUANTUM MATTER

CURRENT FRONTIER IN EXPERIMENT

RYDBERG ATOM ARRAYS

Semeghini et al., Science '21

SUPERCONDUCTING QUANTUM PROCESSORS

SOLID-STATE SYSTEMS

Markus Heyl

INTERACTING 2D QUANTUM MATTER

SOLVING THE 2D QUANTUM PROBLEM THEORETICALLY IS DIFFICULT

COMPLEXITY IS A MATTER OF THE METHOD

EXACT DIAGONALIZATION	TENSOR NETWORKS	QUANTUM MONTE CARLO
Curse of dimensionality	Entanglement	Sign problem
	Contraction complexity	

NEURAL QUANTUM STATE (NQS)

NOVEL CLASS OF VARIATIONAL WAVE FUNCTIONS

QUANTUM STATES IN COMPUTATIONAL BASIS

$$|\psi\rangle = \sum_{s} \psi_{s} |s\rangle$$

NEURAL QUANTUM STATE (NQS)

NOVEL CLASS OF VARIATIONAL WAVE FUNCTIONS

QUANTUM STATES IN COMPUTATIONAL BASIS

$$|\psi\rangle = \sum_{s} \psi_{s} |s\rangle$$

encode into an artificial neural network (ANN)

Carleo & Troyer, Science '17

NEURAL QUANTUM STATE (NQS)

NOVEL CLASS OF VARIATIONAL WAVE FUNCTIONS

QUANTUM STATES IN COMPUTATIONAL BASIS

$$|\psi\rangle = \sum_{s} \psi_{s} |s\rangle$$

encode into an artificial neural network (ANN)

Carleo & Troyer, Science '17

UNIVERSAL APPROXIMATION THEOREM

Numerically exact approach

Convergence parameter: size of ANN

GROUND STATES OF COMPLEX 2D QUANTUM MATTER

Ao Chen University of Augsburg

GROUND STATES

STOCHASTIC RECONFIGURATION (SR)

NQS IS A VARIATIONAL WAVE FUNCTION

$$\psi(\theta)\rangle = \sum_{s} \psi_s(\theta) |s\rangle$$

GROUND STATE: Minimize variational energy

$$\mathcal{E}(\theta) = \frac{\langle \psi(\theta) | H | \psi(\theta) \rangle}{\langle \psi(\theta) | \psi(\theta) \rangle}$$

SR: Imaginary time evolution (from random initial condition)

$$S\dot{\theta} = F \qquad \Rightarrow \dot{\theta} = S^{-1}F$$

KEY CHALLENGE IN SR

MATRIX INVERSION

$$S\dot{\theta} = F \qquad \Rightarrow \dot{\theta} = S^{-1}F$$

CHALLENGE: $S \in \mathbb{C}^{N_p \times N_p}$ N_p : number of variational parameters

Computational complexity for inversion: $\mathcal{O}(N_p^3)$

LIMITS CRITICALLY THE REACHABLE ANN SIZES

SOLUTION: Minimum-step stochastic Reconfiguration

Chen & MH Nature Phys. '24

Reducing the computational complexity: $\mathcal{O}(N_p)$

Markus Heyl

A NEW OPTIMIZER: MINSR NEURAL TANGENT KERNEL

ANTIFERROMAGNETIC HEISENBERG MODEL SQUARE LATTICE

$$\mathcal{H} = J_1 \sum_{\langle i,j \rangle} \mathbf{S}_i \cdot \mathbf{S}_j + J_2 \sum_{\langle \langle i,j \rangle \rangle} \mathbf{S}_i \cdot \mathbf{S}_j$$

HEISENBERG MODEL

APPROACHING MACHINE PRECISION

Chen & MH Nature Phys. '24

J1-J2 MODEL

FRUSTRATED POINT J2/J1=1/2

Chen & MH Nature Phys. '24

MEASURING GAPS IN THE J1-J2 MODEL

SQUARE AND TRIANGULAR LATTICES

GAPS Measured between S=1 and S=0

SQUARE LATTICE J2/J1=1/2 M-point at k= (π,π)

TRIANGULAR LATTICE J2/J1=1/8 $k=(4\pi/3,0)$

Chen & MH Nature Phys. '24

ACCURATE ESTIMATION OF PHASE DIAGRAMS

J1-J2 MODEL ON THE TRIANGULAR LATTICE

 $R = 1 - S(\mathbf{Q}_{\text{peak}} + \delta \mathbf{q}) / S(\mathbf{Q}_{\text{peak}})$

SOLVING 2D QUANTUM MATTER WITH NEURAL QUANTUM STATES

Ao Chen University of Augsburg

European Research Council

Universität Augsburg University