
Graph neural network
based decoders for

quantum error
correcting codes

Mats Granath
Department of Physics

University of Gothenburg

2nd Workshop of Machine Learning for Quantum Technology
Max Planck Institute for the Science of Light

Erlangen
Nov 6, 2024

Quantum computing limited by decoherence
Superconducting qubits:
• lifetime - 100 microsecond
• two qubit gate times – few 100 nanoseconds
Maximum few 100 gates deep circuits (error rates
~ 10-3)

To factor N=22048 size integer using Shor’s algorithm
takes > (logN)2 = 107 deep circuit. (error rates < 10-7)

Longer qubit lifetimes needed to get ``quantum advantage’’?

Assuming all gates
readily available!

Quantum error correction
Distribute information over many physical qubits --> Lower error rate logical qubit

Nature | Vol 614 | 23 February 2023 | 677

determine the overall effect of these inferred errors on the logical qubit,
thus preserving the logical state. Most surface code logical gates can
be implemented by maintaining logical memory and executing differ-
ent sequences of measurements on the code boundary35–37. Thus, we
focus on preserving logical memory, the core technical challenge in
operating the surface code.

We implement the surface code on an expanded Sycamore device38
with 72 transmon qubits39 and 121 tunable couplers40,41. Each qubit is
coupled to four nearest neighbours except on the boundaries, with
mean qubit coherence times T1 = 20 µs and T2,CPMG = 30 µs, in which
CPMG represents Carr–Purcell–Meiboom–Gill. As in ref. 42, we imple-
ment single-qubit rotations, controlled-Z (CZ) gates, reset and measure-
ment, demonstrating similar or improved simultaneous performance
as shown in Fig. 1c.

The distance-5 surface code logical qubit is encoded on a 49-qubit
subset of the device, with 25 data qubits and 24 measure qubits. Each
measure qubit corresponds to one stabilizer, classified by its basis
(X or Z) and the number of data qubits involved (weight, 2 or 4). Ideally,
to assess how logical performance scales with code size, we would
compare distance-5 and distance-3 logical qubits under identical noise.

Although device inhomogeneity makes this comparison difficult,
we can compare the distance-5 logical qubit to the average of four
distance-3 logical qubit subgrids, each containing nine data qubits
and eight measure qubits. These distance-3 logical qubits cover the
four quadrants of the distance-5 code with minimal qubit overlap,
capturing the average performance of the full distance-5 grid.

In a single instance of the experiment, we initialize the logical qubit
state, run several cycles of error correction, and then measure the final
logical state. We show an example in Fig. 2a. To prepare a ZL eigenstate,
we first prepare each data qubit in |0# or |1# , an eigenstate of the
Z stabilizers. The first cycle of stabilizer measurements then projects
the data qubits into an entangled state that is also an eigenstate of the
X stabilizers. Each cycle contains CZ and Hadamard gates sequenced
to extract X and Z stabilizers simultaneously, and ends with the meas-
urement and reset of the measure qubits. In the final cycle, we also
measure the data qubits in the Z basis, yielding both parity information
and a measurement of the logical state. Preparing and measuring XL
eigenstates proceeds analogously. The instance succeeds if the
corrected logical measurement agrees with the known initial state;
otherwise, a logical error has occurred.

Our stabilizer circuits contain a few modifications to the standard
gate sequence described above (see Supplementary Information),
including phase corrections to correct for unintended qubit frequency
shifts and dynamical decoupling gates during qubit idles43. We also
remove certain Hadamard gates to implement the ZXXZ variant of the
surface code44,45, which helps symmetrize the X- and Z-basis logical error
rates. Finally, during initialization, the data qubits are prepared into
randomly selected bitstrings. This ensures that we do not preferentially
measure even parities in the first few cycles of the code, which could
artificially lower logical error rates owing to bias in measurement error
(see Supplementary Information).

Error detectors
After initialization, parity measurements should produce the same
value in each cycle, up to known flips applied by the circuit. If we com-
pare a parity measurement to the corresponding measurement in the
preceding cycle and their values are inconsistent, a detection event
has occurred, indicating an error. We refer to these comparisons as
detectors.

The detection event probabilities for each detector indicate the
distribution of physical errors in space and time while running the
surface code. In Fig. 2, we show the detection event probabilities in
the distance-5 code (Fig. 2b,c) and the distance-3 codes (Fig. 2d,e) run-
ning for 25 cycles, as measured over 50,000 experimental instances.
For the weight-4 stabilizers, the average detection probability is
0.185 ± 0.018 (1σ) in the distance-5 code and 0.175 ± 0.017 averaged
over the distance-3 codes. The weight-2 stabilizers interact with fewer
qubits and hence detect fewer errors. Correspondingly, they yield a
lower average detection probability of 0.119 ± 0.012 in the distance-5
code and 0.115 ± 0.008 averaged over the distance-3 codes. The relative
consistency between code distances suggests that growing the lattice
does not substantially increase the component error rates during error
correction.

The average detection probabilities exhibit a relative rise of 12% for
distance-5 and 8% for distance-3 over 25 cycles, with a typical character-
istic risetime of roughly 5 cycles (see Supplementary Information). We
attribute this rise to data qubits leaking into non-computational excited
states and anticipate that the inclusion of leakage-removal techniques
on data qubits would help to mitigate this rise42,46–48. We reason that
the greater increase in detection probability in the distance-5 code is
due to increased stray interactions or leakage from simultaneously
operating more gates and measurements.

We test our understanding of the physical noise in our system by
comparing the experimental data to a simulation. We begin with a

a

Measure qubit (d2 – 1)
Data qubit (d2)

Unused

ZL

XL

Time

b

1Q CZ Meas. DD
c

Subset distance-3

Pauli and measurement
error rates

C
um

ul
at

iv
e

di
st

rib
ut

io
n

10–3

1

0
10–2

Fig. 1 | Implementing surface code logical qubits. a, Schematic of a 72-qubit
Sycamore device with a distance-5 surface code embedded, consisting of 25 data
qubits (gold) and 24 measure qubits (blue). Each measure qubit is associated
with a stabilizer (blue coloured tile, dark: X, light: Z). Representative logical
operators ZL (black) and XL (green) traverse the array, intersecting at the lower-
left data qubit. The upper right quadrant (red outline) is one of four subset
distance-3 codes (the four quadrants) that we compare to distance-5.
b, Illustration of a stabilizer measurement, focusing on one data qubit (labelled ψ)
and one measure qubit (labelled 0), in perspective view with time progressing to
the right. Each qubit participates in four CZ gates (black) with its four nearest
neighbours, interspersed with Hadamard gates (H), and finally, the measure
qubit is measured and reset to |0# (MR). Data qubits perform dynamical
decoupling (DD) while waiting for the measurement and reset. All stabilizers are
measured in this manner concurrently. Cycle duration is 921 ns, including 25-ns
single-qubit gates, 34-ns two-qubit gates, 500-ns measurement and 160-ns reset
(see Supplementary Information for compilation details). The readout and reset
take up most of the cycle time, so the concurrent data qubit idling is a dominant
source of error. c, Cumulative distributions of errors for single-qubit gates (1Q),
CZ gates, measurement (Meas.) and data qubit dynamical decoupling
(idle during measurement and reset), which we refer to as component errors.
The circuits were benchmarked in simultaneous operation using random circuit
techniques, on the 49 qubits used in distance-5 and the 4 CZ layers from the
stabilizer circuit38,59 (see Supplementary Information). Vertical lines are means.

Repeated projective parity measurements allows for error correction

676 | Nature | Vol 614 | 23 February 2023

Article

Suppressing quantum errors by scaling a
surface code logical qubit

Google Quantum AI*

Practical quantum computing will require error rates well below those achievable
with physical qubits. Quantum error correction1,2 o!ers a path to algorithmically
relevant error rates by encoding logical qubits within many physical qubits,
for which increasing the number of physical qubits enhances protection against
physical errors. However, introducing more qubits also increases the number
of error sources, so the density of errors must be su"ciently low for logical
performance to improve with increasing code size. Here we report the
measurement of logical qubit performance scaling across several code sizes,
and demonstrate that our system of superconducting qubits has su"cient
performance to overcome the additional errors from increasing qubit number.
We #nd that our distance-5 surface code logical qubit modestly outperforms an
ensemble of distance-3 logical qubits on average, in terms of both logical error
probability over 25 cycles and logical error per cycle ((2.914 ± 0.016)% compared
to (3.028 ± 0.023)%). To investigate damaging, low-probability error sources, we run
a distance-25 repetition code and observe a 1.7 × 10−6 logical error per cycle 'oor set
by a single high-energy event (1.6 × 10−7 excluding this event). We accurately model
our experiment, extracting error budgets that highlight the biggest challenges
for future systems. These results mark an experimental demonstration in which
quantum error correction begins to improve performance with increasing qubit
number, illuminating the path to reaching the logical error rates required for
computation.

Since Feynman’s proposal to compute using quantum mechanics3,
many potential applications have emerged, including factoring4,
optimization5, machine learning6, quantum simulation7 and quan-
tum chemistry8. These applications often require billions of quantum
operations9–11 and state-of-the-art quantum processors typically have
error rates around 10−3 per gate12–17, far too high to execute such large
circuits. Fortunately, quantum error correction can exponentially
suppress the operational error rates in a quantum processor, at the
expense of temporal and qubit overhead18,19.

Several works have reported quantum error correction on codes
able to correct a single error, including the distance-3 Bacon–Shor20,
colour21, five-qubit22, heavy-hexagon23 and surface24,25 codes, as well as
continuous variable codes26–29. However, a crucial question remains of
whether scaling up the error-correcting code size will reduce logical
error rates in a real device. In theory, logical errors should be reduced if
physical errors are sufficiently sparse in the quantum processor. In prac-
tice, demonstrating reduced logical error requires scaling up a device to
support a code that can correct at least two errors, without sacrificing
state-of-the-art performance. In this work we report a 72-qubit super-
conducting device supporting a 49-qubit distance-5 (d = 5) surface
code that narrowly outperforms its average subset 17-qubit distance-3
surface code, demonstrating a critical step towards scalable quantum
error correction.

Surface codes with superconducting qubits
Surface codes30–34 are a family of quantum error-correcting codes that
encode a logical qubit into the joint entangled state of a d × d square
of physical qubits, referred to as data qubits. The logical qubit states
are defined by a pair of anti-commuting logical observables XL and ZL.
For the example shown in Fig. 1a, a ZL observable is encoded in the joint
Z-basis parity of a line of qubits that traverses the lattice from top to
bottom, and likewise an XL observable is encoded in the joint X-basis
parity traversing left to right. This non-local encoding of information
protects the logical qubit from local physical errors, provided we can
detect and correct them.

To detect errors, we periodically measure X and Z parities of adjacent
clusters of data qubits with the aid of d2 − 1 measure qubits interspersed
throughout the lattice. As shown in Fig. 1b, each measure qubit interacts
with its neighbouring data qubits to map the joint data qubit parity
onto the measure qubit state, which is then measured. Each parity
measurement, or stabilizer, commutes with the logical observables of
the encoded qubit as well as every other stabilizer. Consequently, we
can detect errors when parity measurements change unexpectedly,
without disturbing the logical qubit state.

A decoder uses the history of stabilizer measurement outcomes to
infer likely configurations of physical errors on the device. We can then

https://doi.org/10.1038/s41586-022-05434-1

Received: 13 July 2022

Accepted: 10 October 2022

Published online: 22 February 2023

Open access

 Check for updates

*A list of authors and their affiliations appears at the end of the paper.

676 | Nature | Vol 614 | 23 February 2023

Article

Suppressing quantum errors by scaling a
surface code logical qubit

Google Quantum AI*

Practical quantum computing will require error rates well below those achievable
with physical qubits. Quantum error correction1,2 o!ers a path to algorithmically
relevant error rates by encoding logical qubits within many physical qubits,
for which increasing the number of physical qubits enhances protection against
physical errors. However, introducing more qubits also increases the number
of error sources, so the density of errors must be su"ciently low for logical
performance to improve with increasing code size. Here we report the
measurement of logical qubit performance scaling across several code sizes,
and demonstrate that our system of superconducting qubits has su"cient
performance to overcome the additional errors from increasing qubit number.
We #nd that our distance-5 surface code logical qubit modestly outperforms an
ensemble of distance-3 logical qubits on average, in terms of both logical error
probability over 25 cycles and logical error per cycle ((2.914 ± 0.016)% compared
to (3.028 ± 0.023)%). To investigate damaging, low-probability error sources, we run
a distance-25 repetition code and observe a 1.7 × 10−6 logical error per cycle 'oor set
by a single high-energy event (1.6 × 10−7 excluding this event). We accurately model
our experiment, extracting error budgets that highlight the biggest challenges
for future systems. These results mark an experimental demonstration in which
quantum error correction begins to improve performance with increasing qubit
number, illuminating the path to reaching the logical error rates required for
computation.

Since Feynman’s proposal to compute using quantum mechanics3,
many potential applications have emerged, including factoring4,
optimization5, machine learning6, quantum simulation7 and quan-
tum chemistry8. These applications often require billions of quantum
operations9–11 and state-of-the-art quantum processors typically have
error rates around 10−3 per gate12–17, far too high to execute such large
circuits. Fortunately, quantum error correction can exponentially
suppress the operational error rates in a quantum processor, at the
expense of temporal and qubit overhead18,19.

Several works have reported quantum error correction on codes
able to correct a single error, including the distance-3 Bacon–Shor20,
colour21, five-qubit22, heavy-hexagon23 and surface24,25 codes, as well as
continuous variable codes26–29. However, a crucial question remains of
whether scaling up the error-correcting code size will reduce logical
error rates in a real device. In theory, logical errors should be reduced if
physical errors are sufficiently sparse in the quantum processor. In prac-
tice, demonstrating reduced logical error requires scaling up a device to
support a code that can correct at least two errors, without sacrificing
state-of-the-art performance. In this work we report a 72-qubit super-
conducting device supporting a 49-qubit distance-5 (d = 5) surface
code that narrowly outperforms its average subset 17-qubit distance-3
surface code, demonstrating a critical step towards scalable quantum
error correction.

Surface codes with superconducting qubits
Surface codes30–34 are a family of quantum error-correcting codes that
encode a logical qubit into the joint entangled state of a d × d square
of physical qubits, referred to as data qubits. The logical qubit states
are defined by a pair of anti-commuting logical observables XL and ZL.
For the example shown in Fig. 1a, a ZL observable is encoded in the joint
Z-basis parity of a line of qubits that traverses the lattice from top to
bottom, and likewise an XL observable is encoded in the joint X-basis
parity traversing left to right. This non-local encoding of information
protects the logical qubit from local physical errors, provided we can
detect and correct them.

To detect errors, we periodically measure X and Z parities of adjacent
clusters of data qubits with the aid of d2 − 1 measure qubits interspersed
throughout the lattice. As shown in Fig. 1b, each measure qubit interacts
with its neighbouring data qubits to map the joint data qubit parity
onto the measure qubit state, which is then measured. Each parity
measurement, or stabilizer, commutes with the logical observables of
the encoded qubit as well as every other stabilizer. Consequently, we
can detect errors when parity measurements change unexpectedly,
without disturbing the logical qubit state.

A decoder uses the history of stabilizer measurement outcomes to
infer likely configurations of physical errors on the device. We can then

https://doi.org/10.1038/s41586-022-05434-1

Received: 13 July 2022

Accepted: 10 October 2022

Published online: 22 February 2023

Open access

 Check for updates

*A list of authors and their affiliations appears at the end of the paper.

Nature | Vol 614 | 23 February 2023 | 677

determine the overall effect of these inferred errors on the logical qubit,
thus preserving the logical state. Most surface code logical gates can
be implemented by maintaining logical memory and executing differ-
ent sequences of measurements on the code boundary35–37. Thus, we
focus on preserving logical memory, the core technical challenge in
operating the surface code.

We implement the surface code on an expanded Sycamore device38
with 72 transmon qubits39 and 121 tunable couplers40,41. Each qubit is
coupled to four nearest neighbours except on the boundaries, with
mean qubit coherence times T1 = 20 µs and T2,CPMG = 30 µs, in which
CPMG represents Carr–Purcell–Meiboom–Gill. As in ref. 42, we imple-
ment single-qubit rotations, controlled-Z (CZ) gates, reset and measure-
ment, demonstrating similar or improved simultaneous performance
as shown in Fig. 1c.

The distance-5 surface code logical qubit is encoded on a 49-qubit
subset of the device, with 25 data qubits and 24 measure qubits. Each
measure qubit corresponds to one stabilizer, classified by its basis
(X or Z) and the number of data qubits involved (weight, 2 or 4). Ideally,
to assess how logical performance scales with code size, we would
compare distance-5 and distance-3 logical qubits under identical noise.

Although device inhomogeneity makes this comparison difficult,
we can compare the distance-5 logical qubit to the average of four
distance-3 logical qubit subgrids, each containing nine data qubits
and eight measure qubits. These distance-3 logical qubits cover the
four quadrants of the distance-5 code with minimal qubit overlap,
capturing the average performance of the full distance-5 grid.

In a single instance of the experiment, we initialize the logical qubit
state, run several cycles of error correction, and then measure the final
logical state. We show an example in Fig. 2a. To prepare a ZL eigenstate,
we first prepare each data qubit in |0# or |1# , an eigenstate of the
Z stabilizers. The first cycle of stabilizer measurements then projects
the data qubits into an entangled state that is also an eigenstate of the
X stabilizers. Each cycle contains CZ and Hadamard gates sequenced
to extract X and Z stabilizers simultaneously, and ends with the meas-
urement and reset of the measure qubits. In the final cycle, we also
measure the data qubits in the Z basis, yielding both parity information
and a measurement of the logical state. Preparing and measuring XL
eigenstates proceeds analogously. The instance succeeds if the
corrected logical measurement agrees with the known initial state;
otherwise, a logical error has occurred.

Our stabilizer circuits contain a few modifications to the standard
gate sequence described above (see Supplementary Information),
including phase corrections to correct for unintended qubit frequency
shifts and dynamical decoupling gates during qubit idles43. We also
remove certain Hadamard gates to implement the ZXXZ variant of the
surface code44,45, which helps symmetrize the X- and Z-basis logical error
rates. Finally, during initialization, the data qubits are prepared into
randomly selected bitstrings. This ensures that we do not preferentially
measure even parities in the first few cycles of the code, which could
artificially lower logical error rates owing to bias in measurement error
(see Supplementary Information).

Error detectors
After initialization, parity measurements should produce the same
value in each cycle, up to known flips applied by the circuit. If we com-
pare a parity measurement to the corresponding measurement in the
preceding cycle and their values are inconsistent, a detection event
has occurred, indicating an error. We refer to these comparisons as
detectors.

The detection event probabilities for each detector indicate the
distribution of physical errors in space and time while running the
surface code. In Fig. 2, we show the detection event probabilities in
the distance-5 code (Fig. 2b,c) and the distance-3 codes (Fig. 2d,e) run-
ning for 25 cycles, as measured over 50,000 experimental instances.
For the weight-4 stabilizers, the average detection probability is
0.185 ± 0.018 (1σ) in the distance-5 code and 0.175 ± 0.017 averaged
over the distance-3 codes. The weight-2 stabilizers interact with fewer
qubits and hence detect fewer errors. Correspondingly, they yield a
lower average detection probability of 0.119 ± 0.012 in the distance-5
code and 0.115 ± 0.008 averaged over the distance-3 codes. The relative
consistency between code distances suggests that growing the lattice
does not substantially increase the component error rates during error
correction.

The average detection probabilities exhibit a relative rise of 12% for
distance-5 and 8% for distance-3 over 25 cycles, with a typical character-
istic risetime of roughly 5 cycles (see Supplementary Information). We
attribute this rise to data qubits leaking into non-computational excited
states and anticipate that the inclusion of leakage-removal techniques
on data qubits would help to mitigate this rise42,46–48. We reason that
the greater increase in detection probability in the distance-5 code is
due to increased stray interactions or leakage from simultaneously
operating more gates and measurements.

We test our understanding of the physical noise in our system by
comparing the experimental data to a simulation. We begin with a

a

Measure qubit (d2 – 1)
Data qubit (d2)

Unused

ZL

XL

Time

b

1Q CZ Meas. DD
c

Subset distance-3

Pauli and measurement
error rates

C
um

ul
at

iv
e

di
st

rib
ut

io
n

10–3

1

0
10–2

Fig. 1 | Implementing surface code logical qubits. a, Schematic of a 72-qubit
Sycamore device with a distance-5 surface code embedded, consisting of 25 data
qubits (gold) and 24 measure qubits (blue). Each measure qubit is associated
with a stabilizer (blue coloured tile, dark: X, light: Z). Representative logical
operators ZL (black) and XL (green) traverse the array, intersecting at the lower-
left data qubit. The upper right quadrant (red outline) is one of four subset
distance-3 codes (the four quadrants) that we compare to distance-5.
b, Illustration of a stabilizer measurement, focusing on one data qubit (labelled ψ)
and one measure qubit (labelled 0), in perspective view with time progressing to
the right. Each qubit participates in four CZ gates (black) with its four nearest
neighbours, interspersed with Hadamard gates (H), and finally, the measure
qubit is measured and reset to |0# (MR). Data qubits perform dynamical
decoupling (DD) while waiting for the measurement and reset. All stabilizers are
measured in this manner concurrently. Cycle duration is 921 ns, including 25-ns
single-qubit gates, 34-ns two-qubit gates, 500-ns measurement and 160-ns reset
(see Supplementary Information for compilation details). The readout and reset
take up most of the cycle time, so the concurrent data qubit idling is a dominant
source of error. c, Cumulative distributions of errors for single-qubit gates (1Q),
CZ gates, measurement (Meas.) and data qubit dynamical decoupling
(idle during measurement and reset), which we refer to as component errors.
The circuits were benchmarked in simultaneous operation using random circuit
techniques, on the 49 qubits used in distance-5 and the 4 CZ layers from the
stabilizer circuit38,59 (see Supplementary Information). Vertical lines are means.

25 qubit “surface code”

Y!b[5Q[Qb%8"6

9 qubit “surface code”

11

a Dp Dp

b Dp Dp

c Dp Dp

d Dp Dp

|0i Xp Dp Dp Dp Dp Xp

Figure 11. Quantum circuit for measuring the weight-four
stabilizer Zabcd under circuit-level noise.

e Dp Dp

f Dp Dp

g Dp Dp

h Dp Dp

|0i Xp H Dp Dp Dp Dp Dp H Dp Xp

Figure 12. Quantum circuit for measuring the weight-four
stabilizer Xefgh under circuit-level noise.

circuit-level noise, single-qubit depolarizing noise gate Dp

(which applies gate �i, i 2 {X, Y, Z} where any of the
gates is applied with probability p/3, and I with proba-
bility 1�p) acts on the data qubits before each stabilizer
measurement cycle and on each target qubit after single-
qubit gates. Two-qubit depolarizing noise gates (which
apply gate �i�j , i, j 2 {I, X, Y, Z}, where II is acted
on with probability 1 � p, and the rest with probability
p/15) act on the two qubits involved after every two-
qubit gate. Furthermore, each qubit suffers from reset-
and measurement-error with probability p, displayed by
operators Xp when measuring and resetting in the com-
putational basis.

[1] Peter W. Shor, “Scheme for reducing decoherence in
quantum computer memory,” Physical Review A 52,
R2493–R2496 (1995).

[2] A. M. Steane, “Error Correcting Codes in Quantum
Theory,” Physical Review Letters 77, 793–797 (1996).

[3] Daniel Gottesman, “Stabilizer Codes and Quantum Er-
ror Correction,” (1997), arXiv:quant-ph/9705052.

[4] Barbara M. Terhal, “Quantum error correction for quan-
tum memories,” Reviews of Modern Physics 87, 307–346
(2015).

[5] Steven M. Girvin, “Introduction to quantum error cor-
rection and fault tolerance,” (2021), arXiv:2111.08894.

[6] Youngseok Kim, Andrew Eddins, Sajant Anand,
Ken Xuan Wei, Ewout van den Berg, Sami Rosenblatt,
Hasan Nayfeh, Yantao Wu, Michael Zaletel, Kristan
Temme, and Abhinav Kandala, “Evidence for the util-
ity of quantum computing before fault tolerance,” Na-
ture 618, 500–505 (2023).

[7] Kristan Temme, Sergey Bravyi, and Jay M Gambetta,
“Error mitigation for short-depth quantum circuits,”
Physical review letters 119, 180509 (2017).

[8] Ying Li and Simon C Benjamin, “Efficient variational
quantum simulator incorporating active error minimiza-
tion,” Physical Review X 7, 021050 (2017).

[9] S. B. Bravyi and A. Yu. Kitaev, “Quantum codes
on a lattice with boundary,” (1998), arXiv:quant-
ph/9811052.

[10] Eric Dennis, Alexei Kitaev, Andrew Landahl, and
John Preskill, “Topological quantum memory,” Journal
of Mathematical Physics 43, 4452–4505 (2002).

[11] A.Yu. Kitaev, “Fault-tolerant quantum computation by
anyons,” Annals of Physics 303, 2–30 (2003).

[12] Robert Raussendorf and Jim Harrington, “Fault-
Tolerant Quantum Computation with High Thresh-
old in Two Dimensions,” Physical Review Letters 98,
190504 (2007).

[13] Austin G. Fowler, Matteo Mariantoni, John M. Marti-
nis, and Andrew N. Cleland, “Surface codes: Towards
practical large-scale quantum computation,” Physical
Review A 86, 032324 (2012).

[14] J. Kelly, R. Barends, A. G. Fowler, A. Megrant, E. Jef-
frey, T. C. White, D. Sank, J. Y. Mutus, B. Camp-
bell, Yu Chen, Z. Chen, B. Chiaro, A. Dunsworth,
I.-C. Hoi, C. Neill, P. J. J. O’Malley, C. Quintana,
P. Roushan, A. Vainsencher, J. Wenner, A. N. Cleland,
and John M. Martinis, “State preservation by repetitive
error detection in a superconducting quantum circuit,”
Nature 519, 66–69 (2015).

[15] Maika Takita, Andrew W. Cross, A. D. Córcoles,
Jerry M. Chow, and Jay M. Gambetta, “Experimen-
tal Demonstration of Fault-Tolerant State Preparation
with Superconducting Qubits,” Physical Review Letters
119, 180501 (2017).

[16] James R. Wootton and Daniel Loss, “Repetition code of
15 qubits,” Phys. Rev. A 97, 052313 (2018).

[17] James R Wootton, “Benchmarking near-term devices
with quantum error correction,” Quantum Science and
Technology 5, 044004 (2020).

[18] Christian Kraglund Andersen, Ants Remm, Stefania
Lazar, Sebastian Krinner, Nathan Lacroix, Graham J.
Norris, Mihai Gabureac, Christopher Eichler, and An-
dreas Wallraff, “Repeated quantum error detection in a
surface code,” Nature Physics 16, 875–880 (2020).

Scalable error suppression
Quantum error correction below the surface code threshold

Google Quantum AI and Collaborators
(Dated: August 27, 2024)

Quantum error correction [1–4] provides a path to reach practical quantum computing by combin-
ing multiple physical qubits into a logical qubit, where the logical error rate is suppressed exponen-
tially as more qubits are added. However, this exponential suppression only occurs if the physical
error rate is below a critical threshold. In this work, we present two surface code memories operating
below this threshold: a distance-7 code and a distance-5 code integrated with a real-time decoder.
The logical error rate of our larger quantum memory is suppressed by a factor of ⇤ = 2.14 ± 0.02
when increasing the code distance by two, culminating in a 101-qubit distance-7 code with 0.143% ±
0.003% error per cycle of error correction. This logical memory is also beyond break-even, exceeding
its best physical qubit’s lifetime by a factor of 2.4± 0.3. We maintain below-threshold performance
when decoding in real time, achieving an average decoder latency of 63 µs at distance-5 up to a mil-
lion cycles, with a cycle time of 1.1 µs. To probe the limits of our error-correction performance, we
run repetition codes up to distance-29 and find that logical performance is limited by rare correlated
error events occurring approximately once every hour, or 3⇥109 cycles. Our results present device
performance that, if scaled, could realize the operational requirements of large scale fault-tolerant
quantum algorithms.

I. INTRODUCTION

Quantum computing promises computational
speedups in quantum chemistry [5], quantum sim-
ulation [6], cryptography [7], and optimization [8].
However, quantum information is fragile and quantum
operations are error-prone. State-of-the-art many-qubit
platforms have only recently demonstrated 99.9% fidelity
entangling gates [9, 10], far short of the < 10�10 error
rates needed for many applications [11, 12]. Quantum
error correction is postulated to realize high-fidelity
logical qubits by distributing quantum information
over many entangled physical qubits to protect against
errors. If the physical operations are below a critical
noise threshold, the logical error should be suppressed
exponentially as we increase the number of physical
qubits per logical qubit. This behavior is expressed in
the approximate relation

"d /
✓

p

pthr

◆(d+1)/2

(1)

for error-corrected surface code logical qubits [3, 4, 13].
Here, d is the code distance indicating 2d2 � 1 physical
qubits used per logical qubit, p and "d are the physical
and logical error rates respectively, and pthr is the thresh-
old error rate of the code. Thus, when p ⌧ pthr, the
error rate of the logical qubit is suppressed exponentially
in the distance of the code, with the error suppression
factor ⇤ = "d/"d+2 ⇡ pthr/p representing the reduction
in logical error rate when increasing the code distance by
two. While many platforms have demonstrated di↵erent
features of quantum error correction [14–20], no quantum
processor has definitively shown below-threshold perfor-
mance.

Although achieving below-threshold physical error
rates is itself a formidable challenge, fault-tolerant quan-
tum computing also imposes requirements beyond raw
performance. These include features like stability over

the hours-long timescales of quantum algorithms [21] and
the active removal of correlated error sources like leak-
age [22]. Fault-tolerant quantum computing also imposes
requirements on classical coprocessors – namely, the syn-
drome information produced by the quantum device must
be decoded as fast as it is generated [23]. The fast op-
eration times of superconducting qubits, ranging from
tens to hundreds of nanoseconds, provide an advantage
in speed but also a challenge for decoding errors both
quickly and accurately.
In this work, we realize surface codes operating be-

low threshold on two superconducting processors. Using
a 72-qubit processor, we implement a distance-5 surface
code operating with an integrated real-time decoder. In
addition, using a 105-qubit processor with similar perfor-
mance, we realize a distance-7 surface code. These pro-
cessors demonstrate ⇤ > 2 up to distance-5 and distance-
7, respectively. Our distance-5 quantum memories are
beyond break-even, with distance-7 preserving quantum
information for more than twice as long as its best con-
stituent physical qubit. To identify possible logical error
floors, we also implement high-distance repetition codes
on the 72-qubit processor, with error rates that are dom-
inated by correlated error events occurring once an hour.
These errors, whose origins are not yet understood, set
a current error floor of 10�10. Finally, we show that
we can maintain below-threshold operation on the 72-
qubit processor even when decoding in real time, meeting
the strict timing requirements imposed by the processor’s
fast 1.1 µs cycle duration.

II. A SURFACE CODE MEMORY BELOW
THRESHOLD

We begin with results from our 105-qubit processor
depicted in Fig. 1a. It features a square grid of super-
conducting transmon qubits [25] with improved opera-

ar
X

iv
:2

40
8.

13
68

7v
1

 [q
ua

nt
-p

h]
 2

4
A

ug
 2

02
4

2

FIG. 1. Surface code performance. a, Schematic of a distance-7 surface code on a 105-qubit processor. Each measure qubit
(blue) is associated with a stabilizer (blue colored tile). Red outline: one of nine distance-3 codes measured for comparison
(3 ⇥ 3 array). Orange outline: one of four distance-5 codes measured for comparison (4 corners). Black outline: distance-7
code. We remove leakage from each data qubit (gold) via a neighboring qubit below it, using additional leakage removal qubits
at the boundary (green). b, Cumulative distributions of error probabilities measured on the 105-qubit processor. Red: Pauli
errors for single-qubit gates. Black: Pauli errors for CZ gates. Blue: Average identification error for measurement. Gold: Pauli
errors for data qubit idle during measurement and reset. Teal: weight-4 detection probabilities (distance-7, averaged over 250
cycles). c, Logical error probability, pL, for a range of memory experiment durations. Each datapoint represents 105 repetitions
decoded with the neural network and is averaged over logical basis (XL and ZL). Black and grey: data from Ref. [17] for
comparison. Curves: exponential fits after averaging pL over code and basis. To compute "d values, we fit each individual code
and basis separately [24]. d, Logical error per cycle, "d, reducing with surface code distance, d. Uncertainty on each point is
less than 5 ⇥ 10�5. Symbols match panel c. Means for d = 3 and d = 5 are computed from the separate "d fits for each code
and basis. Line: fit to Eq. 1, determining ⇤. Inset: simulations up to d = 11 alongside experimental points, both decoded with
ensembled matching synthesis for comparison. Line: fit to simulation, ⇤sim = 2.25± 0.02.

tional fidelities compared to our previously reported pro-
cessors [17, 26]. The qubits have a mean operating T1

of 68µs and T2,CPMG of 89µs, which we attribute to im-
proved fabrication techniques, participation ratio engi-
neering, and circuit parameter optimization. Increasing
coherence contributes to the fidelity of all of our opera-
tions which are displayed in Fig. 1b.

We also make several improvements to decoding, em-
ploying two types of o✏ine high-accuracy decoders. One
is a neural network decoder [27], and the other is a
harmonized ensemble [28] of correlated minimum-weight
perfect matching decoders [29] augmented with match-
ing synthesis [30]. These run on di↵erent classical hard-
ware, o↵ering two potential paths towards real-time de-
coding with higher accuracy. To adapt to device noise,
we fine-tune the neural network with processor data [27]
and apply a reinforcement learning optimization to the
matching graph weights [31].

We operate a distance-7 surface code memory com-
prising 49 data qubits, 48 measure qubits, and 4 addi-
tional leakage removal qubits, following the methods in
Ref. [17]. Summarizing, we initiate surface code opera-
tion by preparing the data qubits in a product state in
either the XL or ZL basis of the ZXXZ surface code [32].
We then repeat a variable number of cycles of error cor-

rection, during which measure qubits extract parity in-
formation from the data qubits to be sent to the decoder.
Following each syndrome extraction, we run data qubit
leakage removal (DQLR) [33] to ensure that leakage to
higher states is short-lived. We measure the state of the
logical qubit by measuring the individual data qubits and
then check whether the decoder’s corrected logical mea-
surement outcome agrees with the initial logical state.

From surface code data, we can characterize the physi-
cal error rate of the processor using the bulk error detec-
tion probability [34]. This is the proportion of weight-4
stabilizer measurement comparisons that detect an er-
ror. The surface code detection probabilities are pdet =
(7.7%, 8.5%, 8.7%) for d = (3, 5, 7). We attribute the in-
crease in detection probability with code size to finite
size e↵ects [24] and parasitic couplings between qubits.
We expect both e↵ects to saturate at larger processor
sizes [35].

We characterize our surface code logical performance
by fitting the logical error per cycle "d up to 250 cycles,
averaged over the X and Z bases. We average the perfor-
mance of 9 di↵erent distance-3 subgrids and 4 di↵erent
distance-5 subgrids to compare to the distance-7 code.
Finally, we compute the error suppression factor ⇤ us-
ing linear regression of ln("d) versus d. With our neural

2

FIG. 1. Surface code performance. a, Schematic of a distance-7 surface code on a 105-qubit processor. Each measure qubit
(blue) is associated with a stabilizer (blue colored tile). Red outline: one of nine distance-3 codes measured for comparison
(3 ⇥ 3 array). Orange outline: one of four distance-5 codes measured for comparison (4 corners). Black outline: distance-7
code. We remove leakage from each data qubit (gold) via a neighboring qubit below it, using additional leakage removal qubits
at the boundary (green). b, Cumulative distributions of error probabilities measured on the 105-qubit processor. Red: Pauli
errors for single-qubit gates. Black: Pauli errors for CZ gates. Blue: Average identification error for measurement. Gold: Pauli
errors for data qubit idle during measurement and reset. Teal: weight-4 detection probabilities (distance-7, averaged over 250
cycles). c, Logical error probability, pL, for a range of memory experiment durations. Each datapoint represents 105 repetitions
decoded with the neural network and is averaged over logical basis (XL and ZL). Black and grey: data from Ref. [17] for
comparison. Curves: exponential fits after averaging pL over code and basis. To compute "d values, we fit each individual code
and basis separately [24]. d, Logical error per cycle, "d, reducing with surface code distance, d. Uncertainty on each point is
less than 5 ⇥ 10�5. Symbols match panel c. Means for d = 3 and d = 5 are computed from the separate "d fits for each code
and basis. Line: fit to Eq. 1, determining ⇤. Inset: simulations up to d = 11 alongside experimental points, both decoded with
ensembled matching synthesis for comparison. Line: fit to simulation, ⇤sim = 2.25± 0.02.

tional fidelities compared to our previously reported pro-
cessors [17, 26]. The qubits have a mean operating T1

of 68µs and T2,CPMG of 89µs, which we attribute to im-
proved fabrication techniques, participation ratio engi-
neering, and circuit parameter optimization. Increasing
coherence contributes to the fidelity of all of our opera-
tions which are displayed in Fig. 1b.

We also make several improvements to decoding, em-
ploying two types of o✏ine high-accuracy decoders. One
is a neural network decoder [27], and the other is a
harmonized ensemble [28] of correlated minimum-weight
perfect matching decoders [29] augmented with match-
ing synthesis [30]. These run on di↵erent classical hard-
ware, o↵ering two potential paths towards real-time de-
coding with higher accuracy. To adapt to device noise,
we fine-tune the neural network with processor data [27]
and apply a reinforcement learning optimization to the
matching graph weights [31].

We operate a distance-7 surface code memory com-
prising 49 data qubits, 48 measure qubits, and 4 addi-
tional leakage removal qubits, following the methods in
Ref. [17]. Summarizing, we initiate surface code opera-
tion by preparing the data qubits in a product state in
either the XL or ZL basis of the ZXXZ surface code [32].
We then repeat a variable number of cycles of error cor-

rection, during which measure qubits extract parity in-
formation from the data qubits to be sent to the decoder.
Following each syndrome extraction, we run data qubit
leakage removal (DQLR) [33] to ensure that leakage to
higher states is short-lived. We measure the state of the
logical qubit by measuring the individual data qubits and
then check whether the decoder’s corrected logical mea-
surement outcome agrees with the initial logical state.

From surface code data, we can characterize the physi-
cal error rate of the processor using the bulk error detec-
tion probability [34]. This is the proportion of weight-4
stabilizer measurement comparisons that detect an er-
ror. The surface code detection probabilities are pdet =
(7.7%, 8.5%, 8.7%) for d = (3, 5, 7). We attribute the in-
crease in detection probability with code size to finite
size e↵ects [24] and parasitic couplings between qubits.
We expect both e↵ects to saturate at larger processor
sizes [35].

We characterize our surface code logical performance
by fitting the logical error per cycle "d up to 250 cycles,
averaged over the X and Z bases. We average the perfor-
mance of 9 di↵erent distance-3 subgrids and 4 di↵erent
distance-5 subgrids to compare to the distance-7 code.
Finally, we compute the error suppression factor ⇤ us-
ing linear regression of ln("d) versus d. With our neural

49 qubit surface code

Best results rely on machine learning for decoding! Bausch et al. 2023

Outline
• The surface code and the decoding problem
• Matching Decoders
• Why machine learning decoders?
• Graph neural networks
• Results and work in progress

1

01

1

1

10

1

0

0

0

1

XL

ZL

1

1

0

1

1

0

1

0

0

1

0

1

1

1

0

1

0

1

0

1

1

0

0

0

0

1

0

0

1

11 X
X

X
X

Z
Z

Z
Z

X
X

Z
Z

1

10

1

1

01

0

1

00

1

1

10

1

0

0

0

0

0

0

1

1

0

0 1

1

10

1

1

01

0

1

00

1

1

10

1

0

0

0

0

0

1

1

1

1

0 1

1

00

1

1

10

1

0

0

1

1

ZL

1

1

0

1

0

0

1

0

0

0

0

1

1

0

0

0

1

1

1

0

0

1

1

1

1

0

2

66664

0
1
4
1
1

3

77775

2

66664

0
1
1
2
1

3

77775

2

66664

0
1
4
5
1

3

77775

2

66664

0
1
4
1
2

3

77775

2

66664

1
0
1
1
2

3

77775

2

66664

1
0
2
2
2

3

77775

2

66664

0
1
4
5
3

3

77775

y

t

x

Surface code recap
Planar version of Kitaev’s toric code

11

a Dp Dp

b Dp Dp

c Dp Dp

d Dp Dp

|0i Xp Dp Dp Dp Dp Xp

Figure 11. Quantum circuit for measuring the weight-four
stabilizer Zabcd under circuit-level noise.

e Dp Dp

f Dp Dp

g Dp Dp

h Dp Dp

|0i Xp H Dp Dp Dp Dp Dp H Dp Xp

Figure 12. Quantum circuit for measuring the weight-four
stabilizer Xefgh under circuit-level noise.

samples are batched in batches of size 103. The learn-
ing rate is set to 10�4 and decreased manually to 10�5,
whenever the validation accuracy reached a plateau. An

example of a training history for d = 5 and varying num-
ber of surface code cycles dt is shown in Figure 10. For
this example, with dt = 5, 100 epochs of training takes
approximately 10 hours. The code is available at [116].

Appendix B: Stabilizer circuits and error model for
circuit-level noise

Quantum circuits for weight-four Z- (X-) stabilizers
of the surface code are displayed in Figure 11 (12). The
gate set used for the stabilizer measurements consists of
the Hadamard gate (H), and the CNOT gate. Under
circuit-level noise, single-qubit depolarizing noise gate Dp

(which applies gate �i, i 2 {X, Y, Z} where any of the
gates is applied with probability p/3, and I with proba-
bility 1�p) acts on the data qubits before each stabilizer
measurement cycle and on each target qubit after single-
qubit gates. Two-qubit depolarizing noise gates (which
apply gate �i�j , i, j 2 {I, X, Y, Z}, where II is acted
on with probability 1 � p, and the rest with probability
p/15) act on the two qubits involved after every two-
qubit gate. Furthermore, each qubit suffers from reset-
and measurement-error with probability p, displayed by
operators Xp when measuring and resetting in the com-
putational basis.

[1] P. W. Shor, Scheme for reducing decoherence in quan-
tum computer memory, Physical Review A 52, R2493
(1995).

[2] A. M. Steane, Error Correcting Codes in Quantum The-
ory, Physical Review Letters 77, 793 (1996).

[3] D. Gottesman, Stabilizer Codes and Quantum Error
Correction (1997), arXiv:quant-ph/9705052.

[4] B. M. Terhal, Quantum error correction for quantum
memories, Reviews of Modern Physics 87, 307 (2015).

[5] S. M. Girvin, Introduction to quantum error correction
and fault tolerance (2021), arXiv:2111.08894.

[6] Y. Kim, A. Eddins, S. Anand, K. X. Wei, E. van den
Berg, S. Rosenblatt, H. Nayfeh, Y. Wu, M. Zaletel,
K. Temme, and A. Kandala, Evidence for the utility
of quantum computing before fault tolerance, Nature
618, 500 (2023).

[7] K. Temme, S. Bravyi, and J. M. Gambetta, Error miti-
gation for short-depth quantum circuits, Physical review
letters 119, 180509 (2017).

[8] Y. Li and S. C. Benjamin, Efficient variational quan-
tum simulator incorporating active error minimization,
Physical Review X 7, 021050 (2017).

[9] S. B. Bravyi and A. Y. Kitaev, Quantum codes on a
lattice with boundary (1998), arXiv:quant-ph/9811052.

[10] E. Dennis, A. Kitaev, A. Landahl, and J. Preskill,
Topological quantum memory, Journal of Mathemati-
cal Physics 43, 4452 (2002).

[11] A. Kitaev, Fault-tolerant quantum computation by
anyons, Annals of Physics 303, 2 (2003).

[12] R. Raussendorf and J. Harrington, Fault-Tolerant
Quantum Computation with High Threshold in Two Di-

mensions, Physical Review Letters 98, 190504 (2007).
[13] A. G. Fowler, M. Mariantoni, J. M. Martinis, and A. N.

Cleland, Surface codes: Towards practical large-scale
quantum computation, Physical Review A 86, 032324
(2012).

[14] J. Kelly, R. Barends, A. G. Fowler, A. Megrant, E. Jef-
frey, T. C. White, D. Sank, J. Y. Mutus, B. Campbell,
Y. Chen, Z. Chen, B. Chiaro, A. Dunsworth, I.-C. Hoi,
C. Neill, P. J. J. O’Malley, C. Quintana, P. Roushan,
A. Vainsencher, J. Wenner, A. N. Cleland, and J. M.
Martinis, State preservation by repetitive error detec-
tion in a superconducting quantum circuit, Nature 519,
66 (2015).

[15] M. Takita, A. W. Cross, A. D. Córcoles, J. M. Chow,
and J. M. Gambetta, Experimental Demonstration of
Fault-Tolerant State Preparation with Superconducting
Qubits, Physical Review Letters 119, 180501 (2017).

[16] J. R. Wootton and D. Loss, Repetition code of 15 qubits,
Phys. Rev. A 97, 052313 (2018).

[17] J. R. Wootton, Benchmarking near-term devices with
quantum error correction, Quantum Science and Tech-
nology 5, 044004 (2020).

[18] C. K. Andersen, A. Remm, S. Lazar, S. Krinner,
N. Lacroix, G. J. Norris, M. Gabureac, C. Eichler, and
A. Wallraff, Repeated quantum error detection in a sur-
face code, Nature Physics 16, 875 (2020).

[19] K. J. Satzinger et al., Realizing topologically ordered
states on a quantum processor, Science 374, 1237
(2021).

[20] L. Egan, D. M. Debroy, C. Noel, A. Risinger, D. Zhu,
D. Biswas, M. Newman, M. Li, K. R. Brown, M. Cetina,

• n=d2 (data) qubits
• d2 -1, 4 and 2 qubit stabilizer (generators)
• Commuting and independent
• k=1 logical qubit
• Code-distance d

Example d=3

Logical Pauli operators:
 commute with stabilizers
 outside stabilizer group
 minimal undetectable error=code-distance

• Hilbert space partitioned by the ±1
eigenvalues of the stabilizers into d2 -1, 2-
dimensional sectors

• Any of these can serve as the logical qubit

2

ure 1. The maximum degree of the graph can be capped
based on removing edges between distant detectors, keep-
ing only a fixed maximum number of neighboring nodes.
The latter ensures that each network layer in the GNN
(see Figure 2) performs a number of matrix multiplica-
tions that scales linearly with the number of nodes, i.e.,
linearly with the number of stabilizer measurements and
the overall error rate. We have trained this decoder on
simulated experimental data for the surface code using
Stim [31] as well as real experimental data on the rep-
etition code [28]. For both of these, the decoder is on
par with, or outperforms, the state-of-the-art matching
decoder [32], suggesting that with sufficient data and a
suitable neural network architecture, model-free machine
learning based decoders trained on experimental data can
be competitive for future implementations of quantum
error-correcting stabilizer codes.

II. STABILIZER CODES AND DECODING

A stabilizer code is defined through a set of commuting
operators constructed from products of Pauli operators
acting on a Hilbert space of n data qubits [3]. With
nS independent stabilizers the Hilbert space is split into
sectors of dimension 2n�nS , specified by the parity un-
der each stabilizer. For concreteness we will consider the
case nS = n � 1, such that each of the sectors represent
a single qubit degree of freedom. Each syndrome mea-
surement is performed with the help of an ancilla qubit
following a small entangling circuit with the relevant data
qubits. The measured state of the ancilla qubits provide
a syndrome S = {si, i = 1, ..., nS | 2 0, 1}, and projects
the density matrix of the n qubit state into a single 2-
dimensional block, a Pauli frame [33, 34]. Given uncer-
tainties in the measurements, a number of rounds are
typically performed before the information is interpreted
by means of a decoder.

Defining a pair of anticommuting operators ZL and
XL that commute with the stabilizer group, provides the
logical computational space through ZL|0iL = |0iL and
|1iL = XL|0iL. Assuming a fixed pair of logical oper-
ators for a given code defines the corresponding logical
states in each Pauli frame. Thus, a number of subsequent
rounds of stabilizer measurements, during which the code
is affected by decoherence, transforms the density ma-
trix from the initial state ⇢ =

P
i,j2{0,1} ⇢ij |iiLhj|L to

the final state ⇢0 =
P

i,j2{0,1} ⇢0
ij |ii0

Lhj|0L, where |0/1iL

(|0/1i0
L) are the logical qubit states in the initial (final)

Pauli frame. The logical error channel is approximated
by

⇢ ! ⇢0 = ✏L(⇢) (1)
= (1 � P)⇢̃ + PXXL⇢̃XL + PZZL⇢̃ZL + PY YL⇢̃YL ,

with YL = �iZLXL and P =
P

i=X,Y,Z Pi. Here
⇢̃ = C(s, s0)⇢C(s, s0), where C(s, s0)|0/1iL = |0/1i0

L, is
an arbitrary Pauli string that effectuates the change of

1

01

1

1

10

1

0

0

0

1

XL

ZL

1

1

0

1

1

0

1

0

0

1

0

1

1

1

0

1

0

1

0

1

1

0

0

0

0

1

0

0

1

11 X
X

X
X

Z
Z

Z
Z

X
X

Z
Z

1

10

1

1

01

0

1

00

1

1

10

1

0

0

0

0

0

0

1

1

0

0 1

1

10

1

1

01

0

1

00

1

1

10

1

0

0

0

0

0

1

1

1

1

0 1

1

00

1

1

10

1

0

0

1

1

ZL

1

1

0

1

0

0

1

0

0

0

0

1

1

0

0

0

1

1

1

0

0

1

1

1

1

0

2

66664

0
1
4
1
1

3

77775

2

66664

0
1
1
2
1

3

77775

2

66664

0
1
4
5
1

3

77775

2

66664

0
1
4
1
2

3

77775

2

66664

1
0
1
1
2

3

77775

2

66664

1
0
2
2
2

3

77775

2

66664

0
1
4
5
3

3

77775

y

t

x

Figure 1. Memory experiment on the distance d = 5 surface
code. Data qubit initialization is followed by dt = 2 stabi-
lizer measurement rounds and a final data qubit measurement
round. Data qubits are on the vertices of plaquettes (circles,
shown in the bottom and top planes). Ancilla qubits (not
shown) at the center of plaquettes provide stabilizer measure-
ments outcomes. The detector graph has nodes corresponding
to changes in stabilizers from the previous time step. (Not all
edges shown.) Nodes are annotated by the type of stabilizer
and the space-time coordinate. The label, here �Z = 1, corre-
sponding to a change of hZLi, measured along the northwest
edge. Also shown, bottom layer, are some example stabilizers,
and the logical XL (not measured).

2

ure 1. The maximum degree of the graph can be capped
based on removing edges between distant detectors, keep-
ing only a fixed maximum number of neighboring nodes.
The latter ensures that each network layer in the GNN
(see Figure 2) performs a number of matrix multiplica-
tions that scales linearly with the number of nodes, i.e.,
linearly with the number of stabilizer measurements and
the overall error rate. We have trained this decoder on
simulated experimental data for the surface code using
Stim [31] as well as real experimental data on the rep-
etition code [28]. For both of these, the decoder is on
par with, or outperforms, the state-of-the-art matching
decoder [32], suggesting that with sufficient data and a
suitable neural network architecture, model-free machine
learning based decoders trained on experimental data can
be competitive for future implementations of quantum
error-correcting stabilizer codes.

II. STABILIZER CODES AND DECODING

A stabilizer code is defined through a set of commuting
operators constructed from products of Pauli operators
acting on a Hilbert space of n data qubits [3]. With
nS independent stabilizers the Hilbert space is split into
sectors of dimension 2n�nS , specified by the parity un-
der each stabilizer. For concreteness we will consider the
case nS = n � 1, such that each of the sectors represent
a single qubit degree of freedom. Each syndrome mea-
surement is performed with the help of an ancilla qubit
following a small entangling circuit with the relevant data
qubits. The measured state of the ancilla qubits provide
a syndrome S = {si, i = 1, ..., nS | 2 0, 1}, and projects
the density matrix of the n qubit state into a single 2-
dimensional block, a Pauli frame [33, 34]. Given uncer-
tainties in the measurements, a number of rounds are
typically performed before the information is interpreted
by means of a decoder.

Defining a pair of anticommuting operators ZL and
XL that commute with the stabilizer group, provides the
logical computational space through ZL|0iL = |0iL and
|1iL = XL|0iL. Assuming a fixed pair of logical oper-
ators for a given code defines the corresponding logical
states in each Pauli frame. Thus, a number of subsequent
rounds of stabilizer measurements, during which the code
is affected by decoherence, transforms the density ma-
trix from the initial state ⇢ =

P
i,j2{0,1} ⇢ij |iiLhj|L to

the final state ⇢0 =
P

i,j2{0,1} ⇢0
ij |ii0

Lhj|0L, where |0/1iL

(|0/1i0
L) are the logical qubit states in the initial (final)

Pauli frame. The logical error channel is approximated
by

⇢ ! ⇢0 = ✏L(⇢) (1)
= (1 � P)⇢̃ + PXXL⇢̃XL + PZZL⇢̃ZL + PY YL⇢̃YL ,

with YL = �iZLXL and P =
P

i=X,Y,Z Pi. Here
⇢̃ = C(s, s0)⇢C(s, s0), where C(s, s0)|0/1iL = |0/1i0

L, is
an arbitrary Pauli string that effectuates the change of

1

01

1

1

10

1

0

0

0

1

XL

ZL

1

1

0

1

1

0

1

0

0

1

0

1

1

1

0

1

0

1

0

1

1

0

0

0

0

1

0

0

1

11 X
X

X
X

Z
Z

Z
Z

X
X

Z
Z

1

10

1

1

01

0

1

00

1

1

10

1

0

0

0

0

0

0

1

1

0

0 1

1

10

1

1

01

0

1

00

1

1

10

1

0

0

0

0

0

1

1

1

1

0 1

1

00

1

1

10

1

0

0

1

1

ZL

1

1

0

1

0

0

1

0

0

0

0

1

1

0

0

0

1

1

1

0

0

1

1

1

1

0

2

66664

0
1
4
1
1

3

77775

2

66664

0
1
1
2
1

3

77775

2

66664

0
1
4
5
1

3

77775

2

66664

0
1
4
1
2

3

77775

2

66664

1
0
1
1
2

3

77775

2

66664

1
0
2
2
2

3

77775

2

66664

0
1
4
5
3

3

77775

y

t

x

Figure 1. Memory experiment on the distance d = 5 surface
code. Data qubit initialization is followed by dt = 2 stabi-
lizer measurement rounds and a final data qubit measurement
round. Data qubits are on the vertices of plaquettes (circles,
shown in the bottom and top planes). Ancilla qubits (not
shown) at the center of plaquettes provide stabilizer measure-
ments outcomes. The detector graph has nodes corresponding
to changes in stabilizers from the previous time step. (Not all
edges shown.) Nodes are annotated by the type of stabilizer
and the space-time coordinate. The label, here �Z = 1, corre-
sponding to a change of hZLi, measured along the northwest
edge. Also shown, bottom layer, are some example stabilizers,
and the logical XL (not measured).

2

ure 1. The maximum degree of the graph can be capped
based on removing edges between distant detectors, keep-
ing only a fixed maximum number of neighboring nodes.
The latter ensures that each network layer in the GNN
(see Figure 2) performs a number of matrix multiplica-
tions that scales linearly with the number of nodes, i.e.,
linearly with the number of stabilizer measurements and
the overall error rate. We have trained this decoder on
simulated experimental data for the surface code using
Stim [31] as well as real experimental data on the rep-
etition code [28]. For both of these, the decoder is on
par with, or outperforms, the state-of-the-art matching
decoder [32], suggesting that with sufficient data and a
suitable neural network architecture, model-free machine
learning based decoders trained on experimental data can
be competitive for future implementations of quantum
error-correcting stabilizer codes.

II. STABILIZER CODES AND DECODING

A stabilizer code is defined through a set of commuting
operators constructed from products of Pauli operators
acting on a Hilbert space of n data qubits [3]. With
nS independent stabilizers the Hilbert space is split into
sectors of dimension 2n�nS , specified by the parity un-
der each stabilizer. For concreteness we will consider the
case nS = n � 1, such that each of the sectors represent
a single qubit degree of freedom. Each syndrome mea-
surement is performed with the help of an ancilla qubit
following a small entangling circuit with the relevant data
qubits. The measured state of the ancilla qubits provide
a syndrome S = {si, i = 1, ..., nS | 2 0, 1}, and projects
the density matrix of the n qubit state into a single 2-
dimensional block, a Pauli frame [33, 34]. Given uncer-
tainties in the measurements, a number of rounds are
typically performed before the information is interpreted
by means of a decoder.

Defining a pair of anticommuting operators ZL and
XL that commute with the stabilizer group, provides the
logical computational space through ZL|0iL = |0iL and
|1iL = XL|0iL. Assuming a fixed pair of logical oper-
ators for a given code defines the corresponding logical
states in each Pauli frame. Thus, a number of subsequent
rounds of stabilizer measurements, during which the code
is affected by decoherence, transforms the density ma-
trix from the initial state ⇢ =

P
i,j2{0,1} ⇢ij |iiLhj|L to

the final state ⇢0 =
P

i,j2{0,1} ⇢0
ij |ii0

Lhj|0L, where |0/1iL

(|0/1i0
L) are the logical qubit states in the initial (final)

Pauli frame. The logical error channel is approximated
by

⇢ ! ⇢0 = ✏L(⇢) (1)
= (1 � P)⇢̃ + PXXL⇢̃XL + PZZL⇢̃ZL + PY YL⇢̃YL ,

with YL = �iZLXL and P =
P

i=X,Y,Z Pi. Here
⇢̃ = C(s, s0)⇢C(s, s0), where C(s, s0)|0/1iL = |0/1i0

L, is
an arbitrary Pauli string that effectuates the change of

1

01

1

1

10

1

0

0

0

1

XL

ZL

1

1

0

1

1

0

1

0

0

1

0

1

1

1

0

1

0

1

0

1

1

0

0

0

0

1

0

0

1

11 X
X

X
X

Z
Z

Z
Z

X
X

Z
Z

1

10

1

1

01

0

1

00

1

1

10

1

0

0

0

0

0

0

1

1

0

0 1

1

10

1

1

01

0

1

00

1

1

10

1

0

0

0

0

0

1

1

1

1

0 1

1

00

1

1

10

1

0

0

1

1

ZL

1

1

0

1

0

0

1

0

0

0

0

1

1

0

0

0

1

1

1

0

0

1

1

1

1

0

2

66664

0
1
4
1
1

3

77775

2

66664

0
1
1
2
1

3

77775

2

66664

0
1
4
5
1

3

77775

2

66664

0
1
4
1
2

3

77775

2

66664

1
0
1
1
2

3

77775

2

66664

1
0
2
2
2

3

77775

2

66664

0
1
4
5
3

3

77775

y

t

x

Figure 1. Memory experiment on the distance d = 5 surface
code. Data qubit initialization is followed by dt = 2 stabi-
lizer measurement rounds and a final data qubit measurement
round. Data qubits are on the vertices of plaquettes (circles,
shown in the bottom and top planes). Ancilla qubits (not
shown) at the center of plaquettes provide stabilizer measure-
ments outcomes. The detector graph has nodes corresponding
to changes in stabilizers from the previous time step. (Not all
edges shown.) Nodes are annotated by the type of stabilizer
and the space-time coordinate. The label, here �Z = 1, corre-
sponding to a change of hZLi, measured along the northwest
edge. Also shown, bottom layer, are some example stabilizers,
and the logical XL (not measured).

Decoding basics

Bit-flip error

Syndrome is measured
Not the error

Decoder: Syndrome => Correction

Challenge: 2d^2+1 errors (Pauli strings) consistent with any 1 syndrome!

This is my example sydrome

Equivalence classes of errors
Class I Class ZClass YClass X

• Errors within a class are equivalent,
since the logical qubit is an
eigenstate of any stablizer

• Optimal decoder: suggest a
correction from the most likely class

Estimating class probabilities
Consider simple depolarizing iid error channel

equations

Mats Granath, Fysik, Natfak

March 2024

1 Introduction

px = py = pz = p/3

⇡C = (p/3)n(1� p)N�n = (1� p)N (p/3
1�p)

n = (1� p)Ne�n/T

1/T = � ln(p/3
1�p)

PE ⇠ ZE =
P

C2E e�nC/T

x0
i = �(W1xi +W2

P
j eijxj)

x0 = 1
#nodes

P
i xi

1

Class I Class ZClass YClass X

Optimal, Maximum-likelihood decoder: calculate the partition functions

equations

Mats Granath, Fysik, Natfak

March 2024

1 Introduction

px = py = pz = p/3

⇡C = (p/3)n(1� p)N�n = (1� p)N (p/3
1�p)

n = (1� p)Ne�n/T

1/T = � ln(p/3
1�p)

PE ⇠ ZE =
P

C2E e�nC/T

x0
i = �(W1xi +W2

P
j eijxj)

x0 = 1
#nodes

P
i xi

1

Probability of an error
chain C, with nc errors:

equations

Mats Granath, Fysik, Natfak

March 2024

1 Introduction

px = py = pz = p/3

⇡C = (p/3)n(1� p)N�n = (1� p)N (p/3
1�p)

n = (1� p)Ne�n/T

1/T = � ln(p/3
1�p)

PE ⇠ ZE =
P

C2E e�nC/T

x0
i = �(W1xi +W2

P
j eijxj)

x0 = 1
#nodes

P
i xi

1

Probability of an
equivalence class E:

equations

Mats Granath, Fysik, Natfak

March 2024

1 Introduction

px = py = pz = p/3

⇡C = (p/3)n(1� p)N�n = (1� p)N (p/3
1�p)

n = (1� p)Ne�n/T

1/T = � ln(p/3
1�p)

PE ⇠ ZE =
P

C2E e�nC/T

x0
i = �(W1xi +W2

P
j eijxj)

x0 = 1
#nodes

P
i xi

1

Asymptotic logical failure rate
Assume error rate p ≪ 1

Most likely error Most likely error in other class

When this error occurs
=> logical (bit-flip) failure

Asymptotic logical failure:

equations

Mats Granath, Fysik, Natfak

March 2024

1 Introduction

px = py = pz = p/3

Pf ⇠ p(d+1)/2

⇡C = (p/3)n(1� p)N�n = (1� p)N (p/3
1�p)

n = (1� p)Ne�n/T

1/T = � ln(p/3
1�p)

PE ⇠ ZE =
P

C2E e�nC/T

x0
i = �(W1xi +W2

P
j eijxj)

x0 = 1
#nodes

P
i xi

1

Logical errors are exponentially supressed with code distance d

Decoders, MLD versus MLE
MLD: Maximum-likelihood decoder. MLE: Most likely error decoder

Metropolis - Monte Carlo

High Threshold Error Correction for the Surface Code

James R. Wootton and Daniel Loss
Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel, Switzerland

(Received 1 March 2012; published 18 October 2012)

An algorithm is presented for error correction in the surface code quantum memory. This is shown to

correct depolarizing noise up to a threshold error rate of 18.5%, exceeding previous results and coming

close to the upper bound of 18.9%. The time complexity of the algorithm is found to be polynomial with

error suppression, allowing efficient error correction for codes of realistic sizes.

DOI: 10.1103/PhysRevLett.109.160503 PACS numbers: 03.67.Ac, 03.65.Vf, 03.67.Pp, 05.50.+q

Introduction.—Topological error correcting codes, and
the topological quantum computation that they may be
used for, have attracted wide attention in recent years
[1–5]. As such, it is important to determine the threshold
error rates for realistic error models and find efficient error
correction algorithms to achieve them. The most studied,
and most realistic topological error correcting codes are the
surface codes [1,2], and the most realistic error model that
is well studied is that of depolarizing noise. The applica-
tion of this noise model to a surface code induces correla-
tions between different kinds of topological defects. Thus
far, error correction algorithms have only been found that
correct up to an error threshold of 16.5%, the upper bound
achievable when the correlations are ignored [6–9]. Here
we present an efficient algorithm that can correct beyond
this bound. A threshold of 18.5% is found, falling only a
little short of the recently established 18.9% limit [10,11].

The planar code.—The algorithm presented below is
designed to correct errors in the planar code, the planar
variant of Kitaev’s surface codes [1,2]. The code is defined
on the spin lattice of Fig. 1, where a spin-1=2 particle is
placed on each vertex. The following Hermitian operators
are then defined around each plaquette of the lattice,

As ¼
Y

i2s

!x
i ; Bp ¼

Y

i2p

!z
i : (1)

These operators determine the anyonic occupation of their
corresponding plaquettes, with so-called flux anyons on the
p plaquettes and charge anyons on the s plaquettes. Since
the operators mutually commute, they also form the stabil-
izers of a stabilizer code. The anyonic vacuum is the
corresponding stabilizer space and the anyon configuration
is the syndrome. The code can store a single qubit, whose
state is determined by the anyonic occupations of the
edges. The X (Z) basis of the stored qubit may be chosen
such that the jþi (j0i) state corresponds to the vacuum on
the top (left) edge and j#i (j1i) corresponds to a flux
(charge) anyon. The effect of errors on the spins is to create
and move anyons, causing logical errors when they are
moved off the edges.

Depolarizing noise.—The error model considered in this
study is that of single qubit depolarizing noise. This is

characterized by an error rate, p, which is taken to be equal
for all spins. The probability that no error occurs on a spin
is 1# p. Otherwise, a !x, !y, or !z error is applied, each
with probability p=3. Such noise therefore takes an arbi-
trary single qubit state " and transforms it to

Dpð"Þ ¼ ð1# pÞ"þ
X

#¼x;y;z

ðp=3Þ!#"!#: (2)

In the planar code, such noise results in correlations be-
tween the configurations of charge and flux anyons. Should
these be ignored, error correction can be achieved so long
as the probability that either a !x or a !y error occurs (or
equivalently a!z or a!y error) is less than around 11% [2].
This gives a threshold of pc & 16:5%. If the correlations
are taken into account, the threshold increases to pc &
18:9% [10,11].
Error correction.—Suppose a planar code, initially pre-

pared in a state of the stabilizer space, is subject to depola-
rizing noise with a known rate p. Given the resulting anyon
configuration (measurement of which we assume to be
perfect), the job of error correction is to determine which
of the four possible logical errors was caused by the
physical errors.

FIG. 1 (color online). The spin lattice on which an L' L
planar code is defined, with s plaquettes shown in blue and p
plaquettes in white. A spin-1=2 particle resides on each vertex.
The linear size L is characterized by the number of s plaquettes
along each side, with L ¼ 4 in this case.

PRL 109, 160503 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending

19 OCTOBER 2012

0031-9007=12=109(16)=160503(5) 160503-1 ! 2012 American Physical Society

PHYSICAL REVIEW A 105, 042616 (2022)

Error-rate-agnostic decoding of topological stabilizer codes

Karl Hammar ,1 Alexei Orekhov ,2 Patrik Wallin Hybelius ,1 Anna Katariina Wisakanto,1

Basudha Srivastava ,1 Anton Frisk Kockum ,2 and Mats Granath 1,*

1Department of Physics, University of Gothenburg, 41296 Gothenburg, Sweden
2Department of Microtechnology and Nanoscience, Chalmers University of Technology, 41296 Gothenburg, Sweden

(Received 15 December 2021; revised 21 March 2022; accepted 5 April 2022; published 25 April 2022)

Efficient high-performance decoding of topological stabilizer codes has the potential to crucially improve
the balance between logical failure rates and the number and individual error rates of the constituent qubits.
High-threshold maximum-likelihood decoders require an explicit error model for Pauli errors to decode a specific
syndrome, whereas lower-threshold heuristic approaches such as minimum-weight matching are error agnostic.
Here we consider an intermediate approach, formulating a decoder that depends on the bias, i.e., the relative
probability of phase-flip to bit-flip errors, but is agnostic to error rate. Our decoder is based on counting the
number and effective weight of the most likely error chains in each equivalence class of a given syndrome.
We use Metropolis-based Monte Carlo sampling to explore the space of error chains and find unique chains
that are efficiently identified using a hash table. Using the error-rate invariance, the decoder can sample chains
effectively at an error rate which is higher than the physical error rate and without the need for thermalization
between chains in different equivalence classes. Applied to the surface code and the XZZX code, the decoder
matches maximum-likelihood decoders for moderate code sizes or low error rates. We anticipate that, because
of the compressed information content per syndrome, it can be taken full advantage of in combination with
machine-learning methods to extrapolate Monte Carlo–generated data.

DOI: 10.1103/PhysRevA.105.042616

I. INTRODUCTION

Quantum decoherence is one of the major challenges that
has to be overcome in building a quantum computer [1–6].
A prominent line of research to address this issue focuses on
topological stabilizer codes implemented on low-connectivity
lattices of qubits [7–11], with small stabilizer codes presently
being realized experimentally [12–24]. The topological codes
provide protection against errors by encoding the quantum
information into entangled states that are removed from each
other by a code distance d , corresponding to the minimal num-
ber of local qubit operations required for a logical operation.
These logical operators act as effective Pauli operators on the
logical code space. Local stabilizers in the form of local Pauli
operations commute with the logical operators; measuring
these stabilizers provides a syndrome of the possible error
configurations, so-called error chains, that are affecting the
code. The error chains can be grouped into equivalence classes
depending on whether they commute with a given representa-
tion of the logical operators or not.

*mats.granath@physics.gu.se

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI. Funded
by Bibsam.

To decide which corrective actions to take given a mea-
sured syndrome, there is a range of different decoders. A
maximum-likelihood decoder (MLD) aims directly at the core
problem of decoding a stabilizer code, which is to identify the
most likely equivalence class of error chains that correspond
to the syndrome, thus specifying a correction chain (or class
of chains) least likely to cause a logical error [9]. Ideally, an
MLD will be optimal in the sense of providing the highest
possible logical fidelity given the type of stabilizer code and
the error rate of individual qubits. Consequently, it will also
provide the highest possible threshold for the code [9,25–27],
corresponding to the error rate below which the logical failure
rate can always be decreased by increasing the code size.

In contrast to maximum-likelihood decoding, there are
heuristic decoders that suggest the correction chain based
on a rule or algorithm which is not guaranteed to fall in
the most likely equivalence class. The standard such algo-
rithm is minimum-weight perfect matching (MWPM) [9,28–
36], which is based on finding a most likely error chain by
mapping the syndrome to a graph problem with weighted
edges. Other examples are based on addressing the syndrome
successively from small to large scale, using the renormal-
ization group [37], cellular-automaton [38,39], or union-find
algorithm [40,41]. Such heuristic decoders generally have
higher logical failure rates and lower error thresholds than
MLDs. Nevertheless, because of the computational complex-
ity of MLDs, nonoptimal decoders may be preferable, or even
necessary, for practical purposes [11].

Following the recent transformative developments in deep
learning [42,43], with applications in quantum physics

2469-9926/2022/105(4)/042616(13) 042616-1 Published by the American Physical Society

Tensor network based

PHYSICAL REVIEW A 90, 032326 (2014)

Efficient algorithms for maximum likelihood decoding in the surface code

Sergey Bravyi, Martin Suchara, and Alexander Vargo
IBM Watson Research Center, Yorktown Heights, New York 10598, USA

(Received 23 June 2014; published 25 September 2014)

We describe two implementations of the optimal error correction algorithm known as the maximum likelihood
decoder (MLD) for the two-dimensional surface code with a noiseless syndrome extraction. First, we show
how to implement MLD exactly in time O(n2), where n is the number of code qubits. Our implementation
uses a reduction from MLD to simulation of matchgate quantum circuits. This reduction however requires
a special noise model with independent bit-flip and phase-flip errors. Secondly, we show how to implement
MLD approximately for more general noise models using matrix product states (MPS). Our implementation has
running time O(nχ 3), where χ is a parameter that controls the approximation precision. The key step of our
algorithm, borrowed from the density matrix renormalization-group method, is a subroutine for contracting a
tensor network on the two-dimensional grid. The subroutine uses MPS with a bond dimension χ to approximate
the sequence of tensors arising in the course of contraction. We benchmark the MPS-based decoder against the
standard minimum weight matching decoder observing a significant reduction of the logical error probability
for χ ! 4.

DOI: 10.1103/PhysRevA.90.032326 PACS number(s): 03.67.Lx, 03.67.Pp

I. INTRODUCTION

The surface code [1,2] is one of the simplest and most
studied quantum error correcting codes. It can be realized on
a two-dimensional grid of qubits such that the codespace is
defined by simple four-qubit parity check operators acting on
nearest-neighbor qubits. Recent years have witnessed a surge
of interest in the surface code as a promising architecture for
a scalable quantum computing [3,4]. Experimental advances
in manufacturing of multiqubit devices [5,6] give us hope that
a small-scale quantum memory based on the surface code
may become a reality soon. Given high operational costs
of a quantum hardware compared with the classical one, it
is crucial to put enough effort in optimizing algorithmic or
software aspects of error correction. In the present paper we
focus on optimizing the decoding algorithm that takes as input
measured syndromes of the parity checks and computes a
recovery operation returning a corrupted state of the memory
back to the codespace.

As the name suggests, the maximum likelihood decoder
(MLD) is an algorithm that finds a recovery operation maxi-
mizing the probability of a successful error correction condi-
tioned on the observed error syndrome. By definition, MLD is
the optimal error correction algorithm for a fixed quantum code
and a fixed noise model. The first rigorous definition of MLD
for the surface codes was proposed by Dennis et al. [2]. An
important observation made in [2] was that the computational
problem associated with MLD can be reduced to computing
the partition function of a classical Ising-like Hamiltonian on
the two-dimensional lattice. This observation has generated a
vast body of work exploring connections between MLD and
the statistical physics of disordered Ising-like Hamiltonians;
see for instance [7–10]. The insights made in [2] have also
guided the search for efficient implementations of MLD.
Although an exact and efficient algorithm for MLD remains an
elusive goal, several approximate polynomial-time algorithms
have been discovered, most notably the renormalization-group
decoder due to Duclos-Cianci and Poulin [11], and the Markov
chain Monte Carlo method due to Hutter, Wootton, and Loss

[12]. In the case of concatenated codes an efficient exact
algorithm for MLD based on the message passing algorithm
was proposed by Poulin [13]. By comparing MLD with the
level-by-level decoder commonly used for concatenated codes,
Ref. [13] found that MLD offers a significant advantage with
almost twofold increase of the error threshold for the depo-
larizing noise and a significant reduction of the logical error
probability.

Here we propose an alternative method of implementing
MLD in the case of the surface code for two simple noise
models known as the bit-flip noise and the depolarizing
noise. Our method combines the ideas of Dennis et al. [2]
and the standard classical-to-quantum mapping from classical
two-dimensional (2D) spin systems in the thermal equilibrium
to quantum 1D spin chains. It enables us to reduce the
computational problem associated with MLD to simulating
a particular type of quantum dynamics for a chain of qubits.

In the case of the bit-flip noise, MLD can be reduced to
simulating a quantum circuit with a special type of two-qubit
nearest-neighbor gates known as matchgates. It was shown by
Valiant [14] that quantum circuits composed of matchgates can
be efficiently simulated by classical means. Matchgate circuits
and their generalizations give rise to efficient holographic al-
gorithms for certain combinatorial problems [15] and efficient
tensor network contraction methods [16,17]. Matchgate-based
algorithms have been used to simulate quantum dynamics
in systems of fermionic modes with quadratic interactions
[18,19] and study statistics of dimer coverings in classical
lattice models [20–22]. Here we demonstrate that matchgates
also have applications for quantum error correction. Our
simulation algorithm based on fermionic Gaussian states [23]
provides an exact implementation of MLD with the running
time O(n2), where n is the number of code qubits. The
same algorithm can also be applied to a noise model with
independent bit-flip and phase-flip errors. We note that a
similar but technically different algorithm has been used by
Merz and Chalker in the numerical study of the random-bond
2D Ising model [24].

1050-2947/2014/90(3)/032326(15) 032326-1 ©2014 American Physical Society

SERGEY BRAVYI, MARTIN SUCHARA, AND ALEXANDER VARGO PHYSICAL REVIEW A 90, 032326 (2014)

is simply because the qubits located on horizontal edges (h
nodes) have site stabilizers on the left and on the right, whereas
qubits located on vertical edges (v nodes) have site stabilizers
on the top and on the bottom:

s node: =
{

1 if i = j = k = l,
0 otherwise, (39)

h node: = π1(fege(j,l; i,k)), (40)

v node: = π1(fege(i,k; j,l)). (41)

B. Approximate contraction algorithm

Let MPS(χ) and MPO(χ) be the set of matrix product
states and matrix product operators defined on a chain of
2d − 1 qubits and having the bond dimension χ . In this
section we shall identify a matrix product state (operator)
with the corresponding tensor network. Consider a partition
of the extended surface code lattice into columns shown on
Fig. 7. Each column V j and each internal column Hj defines
a matrix product operator V̂ j ∈ MPO(2) and Ĥ j ∈ MPO(2),
respectively. The first and the last columns H 1,Hd define
matrix product states Ĥ 1,Ĥ d ∈ MPS(2). Here we identify
horizontal links of the lattice with physical indexes of MPO
and MPS, while vertical links correspond to virtual indexes.
By definition, contracting a consecutive pair of columns is
equivalent to taking the product of the corresponding MPOs.
Thus Eq. (38) can be rewritten as

π (fG) = 〈Ĥ d |V̂ d−1 · · · Ĥ 2V̂ 1|Ĥ 1〉. (42)

To approximate the right-hand side of Eq. (42) we shall
employ the algorithm proposed by Murg, Verstraete, and Cirac
[26,27]; see also [34,35]. The approximation accuracy of the
algorithm is controlled by an integer parameter χ ! 2 such that

FIG. 7. (Color online) Partition of the extended lattice into “hor-
izontal” columns H 1, . . . ,Hd and “vertical” columns V 1, . . . ,V d−1

(here d = 3).

the algorithm becomes exact if χ is exponentially large in d. At
each step of the algorithm we maintain a state ψ ∈ MPS(χ).
Such a state can be described by a list of 2d − 1 tensors of
dimension 2×χ×χ which requires O(dχ2) real parameters.
We begin by initializing ψ = Ĥ 1. Note that Ĥ 1 ∈ MPS(2) ⊆
MPS(χ). Each step of the algorithm updates ψ according
to ψ → Ĥ jψ (even steps) or ψ → V̂ jψ (odd steps). This
update is realized simply by taking the product of tensors of
ψ with the respective tensors of Ĥ j or V̂ j which takes time
O(dχ2). Since Ĥ j and V̂ j map MPS(χ) to MPS(2χ), extra
measures have to be taken to reduce the bond dimension after
each update. To this end we apply the truncation algorithm
described in Sec. 4.5 of Ref. [29]. We shall use a function
Truncate() that takes as input a state φ ∈ MPS(2χ) and returns
a state ψ ∈ MPS(χ) approximating φ. Such an approximation
is obtained by computing the Schmidt decomposition of φ
across each bipartite cut of the chain and retaining only the χ
largest Schmidt coefficients. A detailed implementation of the
function Truncate() is described in the next section. The last
step of the algorithm is to compute the inner product between
the final state ψ ∈ MPS(χ) and Ĥ d ∈ MPS(2). This can be
done in time O(dχ3) by applying the standard contraction
method for MPS. As we explain in the next section, each call
to the function Truncate() involves 2d − 1 QR decompositions
and SVD decompositions on matrices of size 2χ×2χ and
2χ×χ , respectively, which takes time O(dχ3). Since we need
one truncation for each column of the lattice, the overall
running time of the algorithm is O(d2χ3) = O(nχ3). The
above steps can be summarized as follows:

Algorithm 2
Input: Pauli operator f
Output: Approximation to π(fG)

ψ ← Ĥ1

for j = 1 to d − 2 do
ψ ←Truncate(V̂ jψ)
ψ ←Truncate(Ĥj+1ψ)

end for
ψ ←Truncate(V̂ d−1ψ)
return 〈Ĥd|ψ〉

C. Truncation of a matrix product state

In this section we describe implementation of the function
Truncate() in Algorithm 2. Our implementation closely follows
Sec. 4.5 of Ref. [29]. For the sake of completeness, we begin by
summarizing the necessary facts about matrix product states.
Below we use a notation L ≡ 2d − 1 for the number of qubits
per column of the lattice.

A matrix product state |ψ〉 ∈ (C2)⊗L describing a chain
of L qubits is defined by a list of 2L matrices A0(s),A1(s),
where s = 1, . . . ,L is a qubit index (site of the chain). Any
amplitude of ψ in the standard basis is expressed as a product
of L matrices

〈x|ψ〉 = Ax1 (1)Ax2 (2) · · · AxL
(L), x ∈ {0,1}L. (43)

We shall use a shorthand notation A(s) for the pair of matrices
A0(s),A1(s) at some particular qubit s. Likewise A will stand

032326-10

Accurate but slow.

Matching decoders (next slide)

KARL HAMMAR et al. PHYSICAL REVIEW A 105, 042616 (2022)

[25] C. Wang, J. Harrington, and J. Preskill, Confinement-Higgs
transition in a disordered gauge theory and the accuracy
threshold for quantum memory, Ann. Phys. (NY) 303, 31
(2003).

[26] H. Bombin, R. S. Andrist, M. Ohzeki, H. G. Katzgraber, and
M. A. Martin-Delgado, Strong Resilience of Topological Codes
to Depolarization, Phys. Rev. X 2, 021004 (2012).

[27] H. G. Katzgraber and R. S. Andrist, Stability of topologically-
protected quantum computing proposals as seen through spin
glasses, J. Phys.: Conf. Ser. 473, 012019 (2013).

[28] J. Edmonds, Paths, trees, and flowers, Can. J. Math. 17, 449
(1965).

[29] D. S. Wang, A. G. Fowler, A. M. Stephens, and L. C. L.
Hollenberg, Threshold error rates for the toric and planar codes,
Quantum Inf. Comput. 10, 456 (2010).

[30] D. S. Wang, A. G. Fowler, and L. C. L. Hollenberg, Surface
code quantum computing with error rates over 1%, Phys. Rev.
A 83, 020302(R) (2011).

[31] T. M. Stace, S. D. Barrett, and A. C. Doherty, Thresholds for
Topological Codes in the Presence of Loss, Phys. Rev. Lett. 102,
200501 (2009).

[32] T. M. Stace and S. D. Barrett, Error correction and degener-
acy in surface codes suffering loss, Phys. Rev. A 81, 022317
(2010).

[33] A. G. Fowler, Optimal complexity correction of correlated er-
rors in the surface code, arXiv:1310.0863.

[34] N. Delfosse and J.-P. Tillich, Proceedings of the 2014 IEEE In-
ternational Symposium on Information Theory, Honolulu (IEEE,
Piscataway, 2014), pp. 1071–1075.

[35] A. G. Fowler, Minimum weight perfect matching of fault-
tolerant topological quantum error correction in average O(1)
parallel time, Quantum Inf. Comput. 15, 145 (2015).

[36] B. Criger and I. Ashraf, Multi-path summation for decoding 2D
topological codes, Quantum 2, 102 (2018).

[37] G. Duclos-Cianci and D. Poulin, Fast Decoders for Topological
Quantum Codes, Phys. Rev. Lett. 104, 050504 (2010).

[38] M. Herold, E. T. Campbell, J. Eisert, and M. J. Kastoryano,
Cellular-automaton decoders for topological quantum memo-
ries, npj Quantum Inf. 1, 15010 (2015).

[39] A. Kubica and J. Preskill, Cellular-Automaton Decoders with
Provable Thresholds for Topological Codes, Phys. Rev. Lett.
123, 020501 (2019).

[40] N. Delfosse and N. H. Nickerson, Almost-linear time decoding
algorithm for topological codes, Quantum 5, 595 (2021).

[41] S. Huang, M. Newman, and K. R. Brown, Fault-tolerant
weighted union-find decoding on the toric code, Phys. Rev. A
102, 012419 (2020).

[42] Y. LeCun, Y. Bengio, and G. Hinton, Deep learning, Nature
(London) 521, 436 (2015).

[43] I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio, Deep
Learning (MIT Press, Cambridge, 2016).

[44] G. Carleo and M. Troyer, Solving the quantum many-body
problem with artificial neural networks, Science 355, 602
(2017).

[45] J. Carrasquilla and R. G. Melko, Machine learning phases of
matter, Nat. Phys. 13, 431 (2017).

[46] E. P. van Nieuwenburg, Y.-H. Liu, and S. D. Huber, Learning
phase transitions by confusion, Nat. Phys. 13, 435 (2017).

[47] J. Carrasquilla, Machine learning for quantum matter, Adv.
Phys.: X 5, 1797528 (2020).

[48] S. Ahmed, C. Sánchez Muñoz, F. Nori, and A. F. Kockum,
Quantum State Tomography with Conditional Generative Ad-
versarial Networks, Phys. Rev. Lett. 127, 140502 (2021).

[49] R. Sweke, M. S. Kesselring, E. P. van Nieuwenburg, and
J. Eisert, Reinforcement learning decoders for fault-tolerant
quantum computation, Mach. Learn.: Sci. Technol. 2, 025005
(2021).

[50] P. Andreasson, J. Johansson, S. Liljestrand, and M. Granath,
Quantum error correction for the toric code using deep rein-
forcement learning, Quantum 3, 183 (2019).

[51] H. P. Nautrup, N. Delfosse, V. Dunjko, H. J. Briegel, and N.
Friis, Optimizing quantum error correction codes with rein-
forcement learning, Quantum 3, 215 (2019).

[52] L. D. Colomer, M. Skotiniotis, and R. Muñoz-Tapia, Rein-
forcement learning for optimal error correction of toric codes,
Phys. Lett. A 384, 126353 (2020).

[53] D. Fitzek, M. Eliasson, A. F. Kockum, and M. Granath, Deep
Q-learning decoder for depolarizing noise on the toric code,
Phys. Rev. Research 2, 023230 (2020).

[54] H. Théveniaut and E. van Nieuwenburg, A NEAT quantum error
decoder, SciPost Phys. 11, 005 (2021).

[55] G. Torlai and R. G. Melko, Neural Decoder for Topological
Codes, Phys. Rev. Lett. 119, 030501 (2017).

[56] S. Krastanov and L. Jiang, Deep neural network probabilistic
decoder for stabilizer codes, Sci. Rep. 7, 11003 (2017).

[57] S. Varsamopoulos, B. Criger, and K. Bertels, Decoding small
surface codes with feedforward neural networks, Quantum Sci.
Technol. 3, 015004 (2018).

[58] P. Baireuther, T. E. O’Brien, B. Tarasinski, and C. W.
Beenakker, Machine-learning-assisted correction of correlated
qubit errors in a topological code, Quantum 2, 48 (2018).

[59] N. P. Breuckmann and X. Ni, Scalable neural network decoders
for higher dimensional quantum codes, Quantum 2, 68 (2018).

[60] C. Chamberland and P. Ronagh, Deep neural decoders for
near term fault-tolerant experiments, Quantum Sci. Technol. 3,
044002 (2018).

[61] X. Ni, Neural network decoders for large-distance 2D toric
codes, Quantum 4, 310 (2020).

[62] S. Gicev, L. C. Hollenberg, and M. Usman, A scalable and fast
artificial neural network syndrome decoder for surface codes,
arXiv:2110.05854.

[63] J. R. Wootton and D. Loss, High Threshold Error Correction for
the Surface Code, Phys. Rev. Lett. 109, 160503 (2012).

[64] A. Hutter, J. R. Wootton, and D. Loss, Efficient Markov chain
Monte Carlo algorithm for the surface code, Phys. Rev. A 89,
022326 (2014).

[65] S. Bravyi, M. Suchara, and A. Vargo, Efficient algorithms for
maximum likelihood decoding in the surface code, Phys. Rev.
A 90, 032326 (2014).

[66] H. Bombin and M. A. Martin-Delgado, Optimal resources
for topological two-dimensional stabilizer codes: Comparative
study, Phys. Rev. A 76, 012305 (2007).

[67] D. K. Tuckett, A. S. Darmawan, C. T. Chubb, S. Bravyi, S. D.
Bartlett, and S. T. Flammia, Tailoring Surface Codes for Highly
Biased Noise, Phys. Rev. X 9, 041031 (2019).

[68] J. P. B. Ataides, D. K. Tuckett, S. D. Bartlett, S. T. Flammia,
and B. J. Brown, The XZZX surface code, Nat. Commun. 12,
2172 (2021).

[69] X.-G. Wen, Quantum Orders in an Exact Soluble Model, Phys.
Rev. Lett. 90, 016803 (2003).

042616-12

Suboptimal, but fast

Matching decoders (Dijkstra + Blossom)

PyMatching: A Python package for decoding quantum codes
with minimum-weight perfect matching

Oscar Higgott∗1

1Department of Physics & Astronomy, University College London, WC1E 6BT
London, United Kingdom

July 14, 2021

Abstract

This paper introduces PyMatching, a fast open-source Python package for decoding quan-
tum error-correcting codes with the minimum-weight perfect matching (MWPM) algorithm.
PyMatching includes the standard MWPM decoder as well as a variant, which we call local
matching, that restricts each syndrome defect to be matched to another defect within a lo-
cal neighbourhood. The decoding performance of local matching is almost identical to that
of the standard MWPM decoder in practice, while reducing the computational complexity ap-
proximately quadratically. We benchmark the performance of PyMatching, showing that local
matching is several orders of magnitude faster than implementations of the full MWPM algo-
rithm using NetworkX or Blossom V for problem sizes typically considered in error correction
simulations. PyMatching and its dependencies are open-source, and it can be used to decode
any quantum code for which syndrome defects come in pairs using a simple Python interface.
PyMatching supports the use of weighted edges, hook errors, boundaries and measurement
errors, enabling fast decoding and simulation of fault-tolerant quantum computing.

1 Introduction

Quantum error correcting codes will be necessary to protect large-scale quantum computers from
noise. An important piece of software required for using any quantum error correcting code is a
decoder, which takes as input the outcome of a set of check operator measurements (the syndrome)
and attempts to find a correction operator that removes any error that may have occurred.

One approach to solving the decoding problem is to attempt minimum-weight decoding, which
finds the smallest error consistent with the syndrome. For general quantum codes, there is no
known solution for the minimum-weight decoding problem since this problem is known to be NP-
complete [1, 2, 3, 4]. However, for a wide class of quantum codes, the minimum-weight decoding
problem (for either X or Z errors) can be solved e�ciently with the help of Edmond’s blossom
algorithm [5] for finding a minimum-weight perfect matching (MWPM) in a graph. Quantum error
correcting codes that can be decoded with MWPM include toric and surface codes [6], the subsystem
surface code [7], 2D hyperbolic [8] and subsystem hyperbolic codes [9], 3D toric and surface codes

∗oscar.higgott.18@ucl.ac.uk

1

ar
X

iv
:2

10
5.

13
08

2v
2

 [q
ua

nt
-p

h]
 1

2
Ju

l 2
02

1

(a) Matching graph (b) Error (c) Syndrome graph

(d) Minimum-weight perfect
matching (e) Correction

Figure 1: Stages of the minimum-weight perfect matching decoder for a distance 10 surface code.

⇡(E) to each Pauli error E 2 Pn. While optimal, maximum likelihood decoding is typically not
e�cient to implement (and is known to be #P-Complete in general [4]), although it can be well
approximated for the surface code using the BSV decoder [22].

A minimum weight decoder instead finds the minimum weight error consistent with the syndrome.
While the performance of minimum weight decoding is less good than maximum likelihood decoding,
the minimum-weight perfect matching (MWPM) decoder can be used to solve the minimum weight
decoding problem e�ciently (for either Z or X errors) for some important families of quantum codes.

3 Minimum-Weight Perfect Matching Decoder

We will now consider the problem of decoding a Pauli Z error E 2 {I, Z}n for a CSS stabiliser
code. Note that we can decode Pauli X errors with the same method, and MWPM can also be
easily adapted to decode certain non-CSS codes (such as the XZZX surface code [10]). We denote
by s the syndrome vector corresponding to X check operators after an error E 2 {I, Z}n occurs.
The syndrome s satisfies s[i] = 1 if the X check operator Si anti-commutes with E, and s[i] = 0
otherwise. We refer to the set of X check operators that anti-commute with E as defects. We also

3

• Fast
• Accurate

• Suboptimal, X and Z stabilizers decoded
separately, and only identifies most likely
error

Encodes propabilites
of errors as edge-
weights

Belief-matching

to the MWPM decoder [35]. However, while the perfor-
mance of the decoder is promising for phenomenological
noise, it is not clear how well suited it is to other noise
models, such as depolarizing noise or general circuit-level
errors in syndrome extraction circuits. In Ref. [16], BP was
used, along with multipath summation, to choose edge
weights for a MWPM decoder, finding a threshold of
17.76% for the surface code with depolarizing noise and
perfect syndrome measurements. However, Ref. [16] did
not consider how to generalize the method to handle noisy
gates in the syndrome extraction circuit.
In this section, we first review the BP algorithm and then

discuss how it is combined with minimum-weight perfect
matching to exploit hyperedge error mechanisms when
decoding circuit-level noise.

A. Belief-matching and belief-find

Our belief-matching and belief-find decoders are given a
prior distribution of the error model (an assignment of an
independent error probability to each of the edge or

hyperedge error mechanisms), as well as the observed
syndrome from the implemented error-correction circuit.
Both decoders consist of two stages illustrated in Fig. 3
for the more simple case where syndrome measurements
are perfect.
In the first stage, we use the BP algorithm to estimate a

posterior distribution of the error model, given the observed
syndrome. More specifically, BP estimates the marginal
probability that each possible error mechanism in the noisy
syndrome extraction circuit has occurred (see Appendix A).
Unlike a conventional MWPM or UF decoder, this stage
uses knowledge of the full error model, including the
hyperedge error mechanisms. However, note that BP is
only able to approximate the posterior distribution and does
not have a threshold if used on its own, owing to the
presence of short loops in the Tanner graph and degeneracy
in the code [54].
In the second stage, we use the posterior marginal

probabilities estimated by BP to set the edge weights in
a matching graph. This contrasts a standard MWPM or UF
decoder, where the prior distribution is used to set edge

FIG. 3. Illustration of belief-matching and belief-find. Given an observed syndrome and an error model, belief propagation is used to
estimate the marginal probability that each error mechanism occurred. These updated error probabilities are used to set edge weights
(here, thicker edges correspond to higher edge weights) in the X and Z matching graphs, which are then decoded with MWPM (for
belief-matching) or weighted UF (for belief-find). In this figure, we consider the decoding problem for perfect syndrome measurements
for simplicity (as considered in Ref. [16]); however, belief-matching and belief-find can also handle more complicated error models
arising from measurements in the syndrome extraction circuit.

IMPROVED DECODING OF CIRCUIT NOISE AND FRAGILE … PHYS. REV. X 13, 031007 (2023)

031007-5

Improved accuracy
SlowerImproved Decoding of Circuit Noise and Fragile Boundaries of Tailored Surface Codes

Oscar Higgott ,1,2,* Thomas C. Bohdanowicz,3,4 Aleksander Kubica,4,5 Steven T. Flammia,4,5 and Earl T. Campbell2,6,7
1Department of Physics and Astronomy, University College London,

Gower Street, London WC1E 6BT, United Kingdom
2AWS Center for Quantum Computing, Cambridge CB1 2GA, United Kingdom

3Goldman, Sachs & Co., New York, New York 10282, USA
4AWS Center for Quantum Computing, Pasadena, California 91106, USA

5California Institute of Technology, Pasadena, California 91125, USA
6Riverlane, Cambridge CB2 3BZ, United Kingdom

7Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH, United Kingdom

(Received 8 June 2022; revised 5 June 2023; accepted 12 June 2023; published 19 July 2023)

Realizing the full potential of quantum computation requires quantum error correction (QEC), with most
recent breakthrough demonstrations of QEC using the surface code. QEC codes use multiple noisy physical
qubits to encode information in fewer logical qubits, enabling the identification of errors through a
decoding process. This process increases the logical fidelity (or accuracy) making the computation more
reliable. However, most fast (efficient run-time) decoders neglect important noise characteristics, thereby
reducing their accuracy. In this work, we introduce decoders that are both fast and accurate, and can be used
with a wide class of QEC codes including the surface code. Our decoders, named belief-matching and
belief-find, exploit all noise information and thereby unlock higher accuracy demonstrations of QEC.
Using the surface code threshold as a performance metric, we observe a threshold at 0.94% error
probability for our decoders, outperforming the 0.82% threshold for a standard minimum-weight perfect
matching decoder. We also test our belief-matching decoders in a theoretical case study of codes tailored to
a biased noise model. We find that the decoders lead to a much higher threshold and lower qubit overhead
in the tailored surface code with respect to the standard, square surface code. Surprisingly, in the well-
below-threshold regime, the rectangular surface code becomes more resource efficient than the tailored
surface code due to a previously unnoticed phenomenon that we call “fragile boundaries.” Our decoders
outperform all other fast decoders in terms of threshold and accuracy, enabling better results in current
quantum-error-correction experiments and opening up new areas for theoretical case studies.

DOI: 10.1103/PhysRevX.13.031007 Subject Areas: Quantum Physics, Quantum Information

I. INTRODUCTION

Quantum error correction (QEC) is an essential ingre-
dient for building a useful quantum computer. Using QEC,
we can exponentially reduce the probability of a computa-
tional failure to any desired level by increasing the number
of qubits used. We can use QEC whenever the probability
of failure (p) for each quantum logic gate is below some
value known as the “threshold” (pth). The most widely
studied QEC code is the surface code, which has a high
threshold and uses gates performed between nearest-
neighbor qubits arranged in a two-dimensional grid
[1,2]. Consequently, the surface code is particularly

amenable to experimental implementations, as highlighted
by recent demonstrations [3,4].
QEC codes require decoders, which are algorithms

running on a classical computer that determine where
errors occurred. The accuracy of a decoder quantifies
how good it is at correctly determining where errors
occurred. A more accurate decoder can increase the value
of the threshold for a QEC code, as well as reduce the
number of physical qubits required to achieve a desired
logical fidelity below threshold. Improving the accuracy of
decoders can therefore lead to less demanding hardware
requirements. Speed is also an important decoder metric.
Ideally, a decoder will have an expected running time that
scales linearly or almost linearly with the size of the
problem, since the decoder must keep up with the quantum
hardware to prevent an exponentially growing decoding
backlog [5,6]. We informally call these fast decoders.
Previous decoders have either been highly accurate [7–9]
or fast [1,10–15] but not both. Here, we propose decoders
that are both fast and accurate.

*oscar.higgott.18@ucl.ac.uk

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI.

PHYSICAL REVIEW X 13, 031007 (2023)

2160-3308=23=13(3)=031007(20) 031007-1 Published by the American Physical Society

Accounts for correlations between X and Z stablizers, due to Y errors

11

a Dp Dp

b Dp Dp

c Dp Dp

d Dp Dp

|0i Xp Dp Dp Dp Dp Xp

Figure 11. Quantum circuit for measuring the weight-four
stabilizer Zabcd under circuit-level noise.

e Dp Dp

f Dp Dp

g Dp Dp

h Dp Dp

|0i Xp H Dp Dp Dp Dp Dp H Dp Xp

Figure 12. Quantum circuit for measuring the weight-four
stabilizer Xefgh under circuit-level noise.

samples are batched in batches of size 103. The learn-
ing rate is set to 10�4 and decreased manually to 10�5,
whenever the validation accuracy reached a plateau. An

example of a training history for d = 5 and varying num-
ber of surface code cycles dt is shown in Figure 10. For
this example, with dt = 5, 100 epochs of training takes
approximately 10 hours. The code is available at [116].

Appendix B: Stabilizer circuits and error model for
circuit-level noise

Quantum circuits for weight-four Z- (X-) stabilizers
of the surface code are displayed in Figure 11 (12). The
gate set used for the stabilizer measurements consists of
the Hadamard gate (H), and the CNOT gate. Under
circuit-level noise, single-qubit depolarizing noise gate Dp

(which applies gate �i, i 2 {X, Y, Z} where any of the
gates is applied with probability p/3, and I with proba-
bility 1�p) acts on the data qubits before each stabilizer
measurement cycle and on each target qubit after single-
qubit gates. Two-qubit depolarizing noise gates (which
apply gate �i�j , i, j 2 {I, X, Y, Z}, where II is acted
on with probability 1 � p, and the rest with probability
p/15) act on the two qubits involved after every two-
qubit gate. Furthermore, each qubit suffers from reset-
and measurement-error with probability p, displayed by
operators Xp when measuring and resetting in the com-
putational basis.

[1] P. W. Shor, Scheme for reducing decoherence in quan-
tum computer memory, Physical Review A 52, R2493
(1995).

[2] A. M. Steane, Error Correcting Codes in Quantum The-
ory, Physical Review Letters 77, 793 (1996).

[3] D. Gottesman, Stabilizer Codes and Quantum Error
Correction (1997), arXiv:quant-ph/9705052.

[4] B. M. Terhal, Quantum error correction for quantum
memories, Reviews of Modern Physics 87, 307 (2015).

[5] S. M. Girvin, Introduction to quantum error correction
and fault tolerance (2021), arXiv:2111.08894.

[6] Y. Kim, A. Eddins, S. Anand, K. X. Wei, E. van den
Berg, S. Rosenblatt, H. Nayfeh, Y. Wu, M. Zaletel,
K. Temme, and A. Kandala, Evidence for the utility
of quantum computing before fault tolerance, Nature
618, 500 (2023).

[7] K. Temme, S. Bravyi, and J. M. Gambetta, Error miti-
gation for short-depth quantum circuits, Physical review
letters 119, 180509 (2017).

[8] Y. Li and S. C. Benjamin, Efficient variational quan-
tum simulator incorporating active error minimization,
Physical Review X 7, 021050 (2017).

[9] S. B. Bravyi and A. Y. Kitaev, Quantum codes on a
lattice with boundary (1998), arXiv:quant-ph/9811052.

[10] E. Dennis, A. Kitaev, A. Landahl, and J. Preskill,
Topological quantum memory, Journal of Mathemati-
cal Physics 43, 4452 (2002).

[11] A. Kitaev, Fault-tolerant quantum computation by
anyons, Annals of Physics 303, 2 (2003).

[12] R. Raussendorf and J. Harrington, Fault-Tolerant
Quantum Computation with High Threshold in Two Di-

mensions, Physical Review Letters 98, 190504 (2007).
[13] A. G. Fowler, M. Mariantoni, J. M. Martinis, and A. N.

Cleland, Surface codes: Towards practical large-scale
quantum computation, Physical Review A 86, 032324
(2012).

[14] J. Kelly, R. Barends, A. G. Fowler, A. Megrant, E. Jef-
frey, T. C. White, D. Sank, J. Y. Mutus, B. Campbell,
Y. Chen, Z. Chen, B. Chiaro, A. Dunsworth, I.-C. Hoi,
C. Neill, P. J. J. O’Malley, C. Quintana, P. Roushan,
A. Vainsencher, J. Wenner, A. N. Cleland, and J. M.
Martinis, State preservation by repetitive error detec-
tion in a superconducting quantum circuit, Nature 519,
66 (2015).

[15] M. Takita, A. W. Cross, A. D. Córcoles, J. M. Chow,
and J. M. Gambetta, Experimental Demonstration of
Fault-Tolerant State Preparation with Superconducting
Qubits, Physical Review Letters 119, 180501 (2017).

[16] J. R. Wootton and D. Loss, Repetition code of 15 qubits,
Phys. Rev. A 97, 052313 (2018).

[17] J. R. Wootton, Benchmarking near-term devices with
quantum error correction, Quantum Science and Tech-
nology 5, 044004 (2020).

[18] C. K. Andersen, A. Remm, S. Lazar, S. Krinner,
N. Lacroix, G. J. Norris, M. Gabureac, C. Eichler, and
A. Wallraff, Repeated quantum error detection in a sur-
face code, Nature Physics 16, 875 (2020).

[19] K. J. Satzinger et al., Realizing topologically ordered
states on a quantum processor, Science 374, 1237
(2021).

[20] L. Egan, D. M. Debroy, C. Noel, A. Risinger, D. Zhu,
D. Biswas, M. Newman, M. Li, K. R. Brown, M. Cetina,

11

a Dp Dp

b Dp Dp

c Dp Dp

d Dp Dp

|0i Xp Dp Dp Dp Dp Xp

Figure 11. Quantum circuit for measuring the weight-four
stabilizer Zabcd under circuit-level noise.

e Dp Dp

f Dp Dp

g Dp Dp

h Dp Dp

|0i Xp H Dp Dp Dp Dp Dp H Dp Xp

Figure 12. Quantum circuit for measuring the weight-four
stabilizer Xefgh under circuit-level noise.

samples are batched in batches of size 103. The learn-
ing rate is set to 10�4 and decreased manually to 10�5,
whenever the validation accuracy reached a plateau. An

example of a training history for d = 5 and varying num-
ber of surface code cycles dt is shown in Figure 10. For
this example, with dt = 5, 100 epochs of training takes
approximately 10 hours. The code is available at [116].

Appendix B: Stabilizer circuits and error model for
circuit-level noise

Quantum circuits for weight-four Z- (X-) stabilizers
of the surface code are displayed in Figure 11 (12). The
gate set used for the stabilizer measurements consists of
the Hadamard gate (H), and the CNOT gate. Under
circuit-level noise, single-qubit depolarizing noise gate Dp

(which applies gate �i, i 2 {X, Y, Z} where any of the
gates is applied with probability p/3, and I with proba-
bility 1�p) acts on the data qubits before each stabilizer
measurement cycle and on each target qubit after single-
qubit gates. Two-qubit depolarizing noise gates (which
apply gate �i�j , i, j 2 {I, X, Y, Z}, where II is acted
on with probability 1 � p, and the rest with probability
p/15) act on the two qubits involved after every two-
qubit gate. Furthermore, each qubit suffers from reset-
and measurement-error with probability p, displayed by
operators Xp when measuring and resetting in the com-
putational basis.

[1] P. W. Shor, Scheme for reducing decoherence in quan-
tum computer memory, Physical Review A 52, R2493
(1995).

[2] A. M. Steane, Error Correcting Codes in Quantum The-
ory, Physical Review Letters 77, 793 (1996).

[3] D. Gottesman, Stabilizer Codes and Quantum Error
Correction (1997), arXiv:quant-ph/9705052.

[4] B. M. Terhal, Quantum error correction for quantum
memories, Reviews of Modern Physics 87, 307 (2015).

[5] S. M. Girvin, Introduction to quantum error correction
and fault tolerance (2021), arXiv:2111.08894.

[6] Y. Kim, A. Eddins, S. Anand, K. X. Wei, E. van den
Berg, S. Rosenblatt, H. Nayfeh, Y. Wu, M. Zaletel,
K. Temme, and A. Kandala, Evidence for the utility
of quantum computing before fault tolerance, Nature
618, 500 (2023).

[7] K. Temme, S. Bravyi, and J. M. Gambetta, Error miti-
gation for short-depth quantum circuits, Physical review
letters 119, 180509 (2017).

[8] Y. Li and S. C. Benjamin, Efficient variational quan-
tum simulator incorporating active error minimization,
Physical Review X 7, 021050 (2017).

[9] S. B. Bravyi and A. Y. Kitaev, Quantum codes on a
lattice with boundary (1998), arXiv:quant-ph/9811052.

[10] E. Dennis, A. Kitaev, A. Landahl, and J. Preskill,
Topological quantum memory, Journal of Mathemati-
cal Physics 43, 4452 (2002).

[11] A. Kitaev, Fault-tolerant quantum computation by
anyons, Annals of Physics 303, 2 (2003).

[12] R. Raussendorf and J. Harrington, Fault-Tolerant
Quantum Computation with High Threshold in Two Di-

mensions, Physical Review Letters 98, 190504 (2007).
[13] A. G. Fowler, M. Mariantoni, J. M. Martinis, and A. N.

Cleland, Surface codes: Towards practical large-scale
quantum computation, Physical Review A 86, 032324
(2012).

[14] J. Kelly, R. Barends, A. G. Fowler, A. Megrant, E. Jef-
frey, T. C. White, D. Sank, J. Y. Mutus, B. Campbell,
Y. Chen, Z. Chen, B. Chiaro, A. Dunsworth, I.-C. Hoi,
C. Neill, P. J. J. O’Malley, C. Quintana, P. Roushan,
A. Vainsencher, J. Wenner, A. N. Cleland, and J. M.
Martinis, State preservation by repetitive error detec-
tion in a superconducting quantum circuit, Nature 519,
66 (2015).

[15] M. Takita, A. W. Cross, A. D. Córcoles, J. M. Chow,
and J. M. Gambetta, Experimental Demonstration of
Fault-Tolerant State Preparation with Superconducting
Qubits, Physical Review Letters 119, 180501 (2017).

[16] J. R. Wootton and D. Loss, Repetition code of 15 qubits,
Phys. Rev. A 97, 052313 (2018).

[17] J. R. Wootton, Benchmarking near-term devices with
quantum error correction, Quantum Science and Tech-
nology 5, 044004 (2020).

[18] C. K. Andersen, A. Remm, S. Lazar, S. Krinner,
N. Lacroix, G. J. Norris, M. Gabureac, C. Eichler, and
A. Wallraff, Repeated quantum error detection in a sur-
face code, Nature Physics 16, 875 (2020).

[19] K. J. Satzinger et al., Realizing topologically ordered
states on a quantum processor, Science 374, 1237
(2021).

[20] L. Egan, D. M. Debroy, C. Noel, A. Risinger, D. Zhu,
D. Biswas, M. Newman, M. Li, K. R. Brown, M. Cetina,

Stabilizer measurement circuits

ZZZZ stabilizer

XXXX stabilizer

To measure stabilizers we use ancilla (measure) qubits

We use Stim to generate simulated “experiments”

11

a Dp Dp

b Dp Dp

c Dp Dp

d Dp Dp

|0i Xp Dp Dp Dp Dp Xp

Figure 11. Quantum circuit for measuring the weight-four
stabilizer Zabcd under circuit-level noise.

e Dp Dp

f Dp Dp

g Dp Dp

h Dp Dp

|0i Xp H Dp Dp Dp Dp Dp H Dp Xp

Figure 12. Quantum circuit for measuring the weight-four
stabilizer Xefgh under circuit-level noise.

samples are batched in batches of size 103. The learn-
ing rate is set to 10�4 and decreased manually to 10�5,
whenever the validation accuracy reached a plateau. An

example of a training history for d = 5 and varying num-
ber of surface code cycles dt is shown in Figure 10. For
this example, with dt = 5, 100 epochs of training takes
approximately 10 hours. The code is available at [116].

Appendix B: Stabilizer circuits and error model for
circuit-level noise

Quantum circuits for weight-four Z- (X-) stabilizers
of the surface code are displayed in Figure 11 (12). The
gate set used for the stabilizer measurements consists of
the Hadamard gate (H), and the CNOT gate. Under
circuit-level noise, single-qubit depolarizing noise gate Dp

(which applies gate �i, i 2 {X, Y, Z} where any of the
gates is applied with probability p/3, and I with proba-
bility 1�p) acts on the data qubits before each stabilizer
measurement cycle and on each target qubit after single-
qubit gates. Two-qubit depolarizing noise gates (which
apply gate �i�j , i, j 2 {I, X, Y, Z}, where II is acted
on with probability 1 � p, and the rest with probability
p/15) act on the two qubits involved after every two-
qubit gate. Furthermore, each qubit suffers from reset-
and measurement-error with probability p, displayed by
operators Xp when measuring and resetting in the com-
putational basis.

[1] P. W. Shor, Scheme for reducing decoherence in quan-
tum computer memory, Physical Review A 52, R2493
(1995).

[2] A. M. Steane, Error Correcting Codes in Quantum The-
ory, Physical Review Letters 77, 793 (1996).

[3] D. Gottesman, Stabilizer Codes and Quantum Error
Correction (1997), arXiv:quant-ph/9705052.

[4] B. M. Terhal, Quantum error correction for quantum
memories, Reviews of Modern Physics 87, 307 (2015).

[5] S. M. Girvin, Introduction to quantum error correction
and fault tolerance (2021), arXiv:2111.08894.

[6] Y. Kim, A. Eddins, S. Anand, K. X. Wei, E. van den
Berg, S. Rosenblatt, H. Nayfeh, Y. Wu, M. Zaletel,
K. Temme, and A. Kandala, Evidence for the utility
of quantum computing before fault tolerance, Nature
618, 500 (2023).

[7] K. Temme, S. Bravyi, and J. M. Gambetta, Error miti-
gation for short-depth quantum circuits, Physical review
letters 119, 180509 (2017).

[8] Y. Li and S. C. Benjamin, Efficient variational quan-
tum simulator incorporating active error minimization,
Physical Review X 7, 021050 (2017).

[9] S. B. Bravyi and A. Y. Kitaev, Quantum codes on a
lattice with boundary (1998), arXiv:quant-ph/9811052.

[10] E. Dennis, A. Kitaev, A. Landahl, and J. Preskill,
Topological quantum memory, Journal of Mathemati-
cal Physics 43, 4452 (2002).

[11] A. Kitaev, Fault-tolerant quantum computation by
anyons, Annals of Physics 303, 2 (2003).

[12] R. Raussendorf and J. Harrington, Fault-Tolerant
Quantum Computation with High Threshold in Two Di-

mensions, Physical Review Letters 98, 190504 (2007).
[13] A. G. Fowler, M. Mariantoni, J. M. Martinis, and A. N.

Cleland, Surface codes: Towards practical large-scale
quantum computation, Physical Review A 86, 032324
(2012).

[14] J. Kelly, R. Barends, A. G. Fowler, A. Megrant, E. Jef-
frey, T. C. White, D. Sank, J. Y. Mutus, B. Campbell,
Y. Chen, Z. Chen, B. Chiaro, A. Dunsworth, I.-C. Hoi,
C. Neill, P. J. J. O’Malley, C. Quintana, P. Roushan,
A. Vainsencher, J. Wenner, A. N. Cleland, and J. M.
Martinis, State preservation by repetitive error detec-
tion in a superconducting quantum circuit, Nature 519,
66 (2015).

[15] M. Takita, A. W. Cross, A. D. Córcoles, J. M. Chow,
and J. M. Gambetta, Experimental Demonstration of
Fault-Tolerant State Preparation with Superconducting
Qubits, Physical Review Letters 119, 180501 (2017).

[16] J. R. Wootton and D. Loss, Repetition code of 15 qubits,
Phys. Rev. A 97, 052313 (2018).

[17] J. R. Wootton, Benchmarking near-term devices with
quantum error correction, Quantum Science and Tech-
nology 5, 044004 (2020).

[18] C. K. Andersen, A. Remm, S. Lazar, S. Krinner,
N. Lacroix, G. J. Norris, M. Gabureac, C. Eichler, and
A. Wallraff, Repeated quantum error detection in a sur-
face code, Nature Physics 16, 875 (2020).

[19] K. J. Satzinger et al., Realizing topologically ordered
states on a quantum processor, Science 374, 1237
(2021).

[20] L. Egan, D. M. Debroy, C. Noel, A. Risinger, D. Zhu,
D. Biswas, M. Newman, M. Li, K. R. Brown, M. Cetina,

11

a Dp Dp

b Dp Dp

c Dp Dp

d Dp Dp

|0i Xp Dp Dp Dp Dp Xp

Figure 11. Quantum circuit for measuring the weight-four
stabilizer Zabcd under circuit-level noise.

e Dp Dp

f Dp Dp

g Dp Dp

h Dp Dp

|0i Xp H Dp Dp Dp Dp Dp H Dp Xp

Figure 12. Quantum circuit for measuring the weight-four
stabilizer Xefgh under circuit-level noise.

samples are batched in batches of size 103. The learn-
ing rate is set to 10�4 and decreased manually to 10�5,
whenever the validation accuracy reached a plateau. An

example of a training history for d = 5 and varying num-
ber of surface code cycles dt is shown in Figure 10. For
this example, with dt = 5, 100 epochs of training takes
approximately 10 hours. The code is available at [116].

Appendix B: Stabilizer circuits and error model for
circuit-level noise

Quantum circuits for weight-four Z- (X-) stabilizers
of the surface code are displayed in Figure 11 (12). The
gate set used for the stabilizer measurements consists of
the Hadamard gate (H), and the CNOT gate. Under
circuit-level noise, single-qubit depolarizing noise gate Dp

(which applies gate �i, i 2 {X, Y, Z} where any of the
gates is applied with probability p/3, and I with proba-
bility 1�p) acts on the data qubits before each stabilizer
measurement cycle and on each target qubit after single-
qubit gates. Two-qubit depolarizing noise gates (which
apply gate �i�j , i, j 2 {I, X, Y, Z}, where II is acted
on with probability 1 � p, and the rest with probability
p/15) act on the two qubits involved after every two-
qubit gate. Furthermore, each qubit suffers from reset-
and measurement-error with probability p, displayed by
operators Xp when measuring and resetting in the com-
putational basis.

[1] P. W. Shor, Scheme for reducing decoherence in quan-
tum computer memory, Physical Review A 52, R2493
(1995).

[2] A. M. Steane, Error Correcting Codes in Quantum The-
ory, Physical Review Letters 77, 793 (1996).

[3] D. Gottesman, Stabilizer Codes and Quantum Error
Correction (1997), arXiv:quant-ph/9705052.

[4] B. M. Terhal, Quantum error correction for quantum
memories, Reviews of Modern Physics 87, 307 (2015).

[5] S. M. Girvin, Introduction to quantum error correction
and fault tolerance (2021), arXiv:2111.08894.

[6] Y. Kim, A. Eddins, S. Anand, K. X. Wei, E. van den
Berg, S. Rosenblatt, H. Nayfeh, Y. Wu, M. Zaletel,
K. Temme, and A. Kandala, Evidence for the utility
of quantum computing before fault tolerance, Nature
618, 500 (2023).

[7] K. Temme, S. Bravyi, and J. M. Gambetta, Error miti-
gation for short-depth quantum circuits, Physical review
letters 119, 180509 (2017).

[8] Y. Li and S. C. Benjamin, Efficient variational quan-
tum simulator incorporating active error minimization,
Physical Review X 7, 021050 (2017).

[9] S. B. Bravyi and A. Y. Kitaev, Quantum codes on a
lattice with boundary (1998), arXiv:quant-ph/9811052.

[10] E. Dennis, A. Kitaev, A. Landahl, and J. Preskill,
Topological quantum memory, Journal of Mathemati-
cal Physics 43, 4452 (2002).

[11] A. Kitaev, Fault-tolerant quantum computation by
anyons, Annals of Physics 303, 2 (2003).

[12] R. Raussendorf and J. Harrington, Fault-Tolerant
Quantum Computation with High Threshold in Two Di-

mensions, Physical Review Letters 98, 190504 (2007).
[13] A. G. Fowler, M. Mariantoni, J. M. Martinis, and A. N.

Cleland, Surface codes: Towards practical large-scale
quantum computation, Physical Review A 86, 032324
(2012).

[14] J. Kelly, R. Barends, A. G. Fowler, A. Megrant, E. Jef-
frey, T. C. White, D. Sank, J. Y. Mutus, B. Campbell,
Y. Chen, Z. Chen, B. Chiaro, A. Dunsworth, I.-C. Hoi,
C. Neill, P. J. J. O’Malley, C. Quintana, P. Roushan,
A. Vainsencher, J. Wenner, A. N. Cleland, and J. M.
Martinis, State preservation by repetitive error detec-
tion in a superconducting quantum circuit, Nature 519,
66 (2015).

[15] M. Takita, A. W. Cross, A. D. Córcoles, J. M. Chow,
and J. M. Gambetta, Experimental Demonstration of
Fault-Tolerant State Preparation with Superconducting
Qubits, Physical Review Letters 119, 180501 (2017).

[16] J. R. Wootton and D. Loss, Repetition code of 15 qubits,
Phys. Rev. A 97, 052313 (2018).

[17] J. R. Wootton, Benchmarking near-term devices with
quantum error correction, Quantum Science and Tech-
nology 5, 044004 (2020).

[18] C. K. Andersen, A. Remm, S. Lazar, S. Krinner,
N. Lacroix, G. J. Norris, M. Gabureac, C. Eichler, and
A. Wallraff, Repeated quantum error detection in a sur-
face code, Nature Physics 16, 875 (2020).

[19] K. J. Satzinger et al., Realizing topologically ordered
states on a quantum processor, Science 374, 1237
(2021).

[20] L. Egan, D. M. Debroy, C. Noel, A. Risinger, D. Zhu,
D. Biswas, M. Newman, M. Li, K. R. Brown, M. Cetina,

Standard circuit-level noise model: Depolarizing single qubit idle and
two-qubit gate errors, and reset and readout errors (Excludes leakage,
amplitude damping, crosstalk, …)

ZZZZ stabilizer

XXXX stabilizer

Simulating experiments with circuit-level noise

Logical failure rates for matching
At overall error rate p=1.0 x 10-3

Very high
accuracies!

Requires detailed
knowledge of error
channel

Q. Can we use a data driven machine learning
approach to decoding?

Motivated by e.g. natural language processing where large deep learning models
made strutured (gramatical) approaches obsolete.

• Model free! (non-Pauli error channel)
• Potentially fast and scalable

Extreme requirements on:
• Accuracy – 0.999999 (or even higher)
• Inference time – μs

Previous work on deep learning based decoders19

TABLE I. A comprehensive literature survey and the comparison of the machine learning based syndrome decoders.

Paper Error correction
code

dmax Threshold ML Technique Noise model

A scalable and fast artificial neural
network syndrome decoder for surface
codes [This Work]

Surface code with
boundaries, braid-
ing and lattice
surgery structures

1025 0.138 Supervised learning con-
volution neural network

Depolarizing, Inho-
mogeneous and Bi-
ased noise models

Scalable Neural Decoder for Topologi-
cal Surface Codes [22]

Toric code 255 0.162(5) Supervised learning dense
neural network

Depolarizing noise

Reinforcement learning for optimal er-
ror correction of toric codes [45]

Toric code 9 0.103 Reinforcement learning,
Deep convolutional net

Bit-flip

Neural Network Decoders for Large-
Distance 2D Toric Codes [35]

Toric code 64 0.095 Supervised learning,
Renormalization group
based neural network

Bit flip

Neural ensemble decoding for topologi-
cal quantum error-correcting codes [46]

Surface code 11 Not
reported

Supervised learning,
Neural network ensemble
learning

Depolarizing noise

Deep Q-learning decoder for depolariz-
ing noise on the toric code [47]

Toric code 9 0.165 Deep reinforcement
learning

Depolarizing noise

Comparing neural network based de-
coders for the surface code [48]

Rotated surface
code

9 0.146
(depol.),
0.0032(circ.)

Supervised learning, Feed
forward neural networks,
Recurrent neural nets
with LSTMs

Depolarizing and
circuit noise

Symmetries for a High Level Neural De-
coder on the Toric Code [49]

Toric code 7 Not
reported

Supervised learning, Feed
forward neural net

Depolarizing noise

Quantum error correction for the toric
code using deep reinforcement learning
[50]

Toric code 7 Not
reported

Deep reinforcement
learning

Bit-flip

Decoding surface code with a dis-
tributed neural network based decoder
[51]

Rotated surface
code

9 Not
reported

Supervised learning, Neu-
ral network

Depolarizing noise

Reinforcement Learning Decoders for
Fault-Tolerant Quantum Computation
[52]

Rotated surface
code

5 Not
reported

Reinforcement learning,
Convolutional neural
network

Bit-flip, Depolar-
izing, Phenomeno-
logical noise

Deep neural decoders for near term
fault-tolerant experiments [24]

Rotated surface
code

5 Not
reported

Supervised learning, Deep
neural networks, Single
layer neural networks

Circuit noise

Scalable Neural Network Decoders for
Higher Dimensional Quantum Codes
[53]

3D toric code, 4D
toric code

12 0.175 (3D),
0.071 (4D)

Supervised learning, Con-
volutional neural network

Bit-flip, Phe-
nomenological
noise

Machine-learning-assisted correction of
correlated qubit errors in a topological
code [21]

Rotated surface
code

3 Not
reported

Supervised learning, Re-
current neural net with
LSTMs

Depolarizing noise
and Measurement
errors

Decoding small surface codes with feed-
forward neural networks [17]

Rotated surface
code

7 Not
reported

Supervised learning, Feed
forward neural network

Bit-flip, Depolar-
izing, Phenomeno-
logical and Circuit
noise

Deep Neural Network Probabilistic De-
coder for Stabilizer Codes [20]

Toric code 9 0.164 Neural net with 15-18 hid-
den layers

Depolarizing noise

Neural Decoder for Topological Codes
[19]

Toric code 6 0.109 Restricted Boltzmann
machine

Phase-flip errors

A scalable and fast artificial neural network syndrome decoder
for surface codes

Spiro Gicev,1, ⇤ Lloyd C.L. Hollenberg,1, † and Muhammad Usman1, 2, ‡

1
Center for Quantum Computation and Communication Technology,

School of Physics, University of Melbourne, Parkville, 3010, VIC, Australia.
2
School of Computing and Information Systems, Melbourne School of Engineering,

University of Melbourne, Parkville, 3010, VIC, Australia

Surface code error correction o↵ers a highly promising pathway to achieve scalable fault-tolerant quantum
computing. When operated as stabilizer codes, surface code computations consist of a syndrome decoding
step where measured stabilizer operators are used to determine appropriate corrections for errors in physical
qubits. Decoding algorithms have undergone substantial development, with recent work incorporating
machine learning (ML) techniques. Despite promising initial results, ML-based syndrome decoders are
still limited to small scale demonstrations with low latency and are incapable of handling surface codes
with boundary conditions and various shapes needed for lattice surgery and braiding. Here, we report the
development of a scalable and fast syndrome decoder powered by an artificial neural network (ANN) which
is capable of decoding surface codes of arbitrary shape and size with data qubits su↵ering from a variety of
noise models including depolarising errors, biased noise, and spatially inhomogeneous noise. The decoding
process involves syndrome processing by an ANN decoder followed by a mop-up step to correct any residual
errors. Based on rigorous training over 50 million random quantum error instances, our ANN decoder is
shown to work with code distances exceeding 1000 (more than 4 million physical qubits), which is the largest
ML-based decoder demonstration to-date. The established ANN decoder demonstrates an execution time
in principle independent of code distance, implying that its implementation on dedicated hardware could
potentially o↵er surface code decoding times of O(µsec), commensurate with the experimentally realisable
qubit coherence times. With the anticipated scale-up of quantum processors within the next decade, their
augmentation with a fast and scalable syndrome decoder such as developed in our work is expected to play
a decisive role towards experimental implementation of fault-tolerant quantum information processing.

Introduction

A scalable error-corrected quantum computer is antici-
pated to outperform classical supercomputers by e�ciently
performing complex computations with implications for
many areas of research and development including cryptog-
raphy, quantum chemistry, drug design, and optimization
problems [1–3]. However, the current generation of quantum
devices are inhibited from executing large circuit depth
algorithms needed to demonstrate quantum advantage for
practical applications due to noise, which is inherently
present in all quantum systems due to factors such as
fabrication imperfections, control errors and interactions
with the environment. Developments in theoretical quantum
error correction suggest that fault tolerant quantum com-
puting (FTQC), capable of tackling real-world problems, is
possible if enough physical qubits are available to construct
error protected logical qubits, and as long as error rates
are achieved beneath a particular threshold [4–6]. One
of the most promising error correction schemes for fault
tolerance is the surface code [7], which exploits topological
properties of a qubit system, and has recently been shown
as experimentally viable [8, 9]. A scalable experimental
implementation of a surface code scheme will be a decisive
step towards practical quantum computing. Such an imple-
mentation would benefit from both a reduction in number of
physical qubits per logical qubit as well as faster operational
times to enable error corrections within the limits of exper-

imentally realisable coherence times. However, attendant
to fast quantum operation times is the requirement of fast
syndrome decoding to allow the quantum error correction
procedure to keep up with the quantum processor itself.
This is the key open problem we address in this work by
exploiting the computational e�ciency of a machine learning
(ML) approach to establish a fast and scalable surface code
error correction framework, which flexibly works with many
di↵erent boundary conditions and code shapes.

Figure 1 (a) schematically illustrates the layout of a surface
code scheme, where data qubits are surrounded by ancilla
qubits. During the operation of surface codes, ancilla
qubits facilitate syndrome measurements which provide
information to indicate where errors may have occurred in
physical qubits. The outcomes of syndrome measurements
are processed by classical algorithms, known as syndrome
decoders, which identify the most appropriate correction
operations (such as illustrated in Figure 1 (b)). A great
deal of work has been done on the design of accurate
surface code decoding algorithms such as minimum weight
perfect matching (MWPM) and renormalisation group (RG)
[10–14], as well as the development and improvement of
fault tolerant surface code computational structures [15, 16].
Supplementary Section 2 provides a quick review of the
decoder literature. Despite many years of research, even
the best available decoder algorithms are generally slow,
which limits the capability of surface codes for experimental
devices. For computations at scales relevant to unambigu-

ar
X

iv
:2

11
0.

05
85

4v
3

 [q
ua

nt
-p

h]
 1

9
A

ug
 2

02
2

Mostly conceptual, with simplified error models

Our early attempt: Deep Reinforcement Learning
DEEP Q-LEARNING DECODER FOR DEPOLARIZING … PHYSICAL REVIEW RESEARCH 2, 023230 (2020)

F
la

tt
en

ed
 c

on
v.

 o
ut

pu
t

Action

d

Input Convolutional layers

d

FIG. 4. Input-output structure of the deep Q network. The input
is a perspective P, constructed from the syndrome s, as shown in
Fig. 5. The hidden layers consist primarily of convolutional layers
(see Appendix B for details). The output is the three action Q values,
Q(P, a, θ), for a ∈ {X,Y, Z} operators on the marked (bold) qubit,
with θ representing the current state of the network.

(ii) Due to the periodic boundary conditions of the toric
code, only the relative positions of syndrome defects are
important, i.e., arbitrary translations and fourfold rotations are
allowed.

(iii) The converged decoder will never operate on a qubit
which is not adjacent to any syndrome defect. Consequently,
we have no need to calculate Q values for such actions.

The Q network takes input in the form of two channels
of d × d matrices, corresponding to the location of vertex
and plaquette defects, respectively. The output is the three Q
values for X , Y , and Z operations on one particular qubit, in a
fixed location #r0 with respect to an external reference frame,
as indicated in Fig. 4. To obtain the full set of action values
for a syndrome, we thus successively translate and rotate the
syndrome to locate each qubit at location #r0. Each such matrix
representation of the syndrome, with a particular qubit at #r0,
is called a “perspective,” and the whole set of perspectives
makes up an “observation,” as exemplified in Fig. 5. In the
observation, we only include perspectives for qubits that are
adjacent to a syndrome defect.

To obtain the full relevant Q function of a syndrome, the
Q function of each individual perspective of an observation
is calculated. In decoding mode, the agent chooses greedily
the action with the highest Q value. After the chosen action
has been performed, a new syndrome is produced and the
process repeats until no defects remain. As discussed in the
Introduction, and exemplified in Fig. 6, the DRL decoding
framework gives a compact structure for information storage
and utilization: using a neural network to generalize informa-
tion between syndromes and using step-by-step decoding to
successively reduce syndromes to a smaller subset.

B. Training the Q network

The neural network is trained using the deep Q-learning
algorithm utilizing prioritized experience replay [52,57]. To
increase stability, two architecturally equivalent neural net-
works are used, the regular Q network, with parameters θ , and

Perspective Perspective

PerspectivePerspective
Observation

Syndrome

FIG. 5. Expanded representation of a syndrome into different
perspectives, based on rotations and translations, used for compact
processing in the Q network (Fig. 4). Only the syndrome, visible
to the network, is shown, not the physical qubits. The two-layer
structure corresponds to separate channels of input for vertex and
plaquette defects. The set of all perspectives form an observation
O = {P1, P2, . . . , PNper }.

the target Q network, with parameters θT . The target network
is synchronized with the Q network on a set interval.

Experience replay saves every transition in a memory
buffer, from which the agent randomly samples a minibatch of
transitions used to update the Q network. Instead of sampling
the minibatch uniformly, as is done with regular experience
replay, prioritized experience replay prioritizes importance
when sampling. This importance is measured with the abso-
lute value of the temporal difference (TD) error

δ j = r j + γ max
a

[Q(s′
j, a; θT)] − Q(s j, a j ; θ), (4)

where the state (syndrome) s′
j follows from action a j on state

(syndrome) s j , and where the expression Q(s, a; θ) implies
choosing the appropriate perspective for the Q network that
corresponds to action a in syndrome s.

Following Ref. [57], the probability of sampling a
transition j from the memory buffer is given by Pj =
|δ j |α/

∑
k |δk|α such that values with higher TD error are more

likely to be sampled. Here, α controls the amount of prioriti-
zation used (α = 0 corresponding to uniform sampling) and
k = 1, . . . , M, with M the size of the memory buffer. Using
nonuniform sampling in this way, however, skews the learning
away from the probability distribution used to generate experi-
ences. To partially compensate for this, importance-sampling
weights are introduced according to w j = (MPj)−β , with the
product of the weights and TD error, w jδ j , used as the loss
during stochastic gradient descent training of the network.
Here, β controls the extent of compensation of the prioritized
sampling, with β = 1 corresponding to full compensation.

The training can be divided into two stages: the action
stage and the learning stage. Pseudocode of the algorithm
used for training is shown in Algorithm I. The training starts
with the action stage. Given a syndrome st , the agent suggests
an action at following an ε-greedy policy, such that with
probability (1 − ε) the agent takes the action with the highest

023230-5

Convolutional network outputs action
values for single qubit corrections

Step-by-step correction

[Y

T
%(

J
%

4
-

7
c

h
%

$
V

4
6

k20

2

$3
*

%
-

+
1

(
ç

%
C

@
@

A-
0

% D0
%

A

8-ê 9?
C

2
-2

3
%

^

8

"9
$

)

H f
3

L
6

$
(

- 8-

(6 -6)"1

C
j

6
-

2

% p
%

|
/

=
+

1
%

J
%

4
j

%
l

4

7

[Y

T
%(

J
%

4
-

7
c

h
%

$
V

4
6

k20

2

$3
*

%
-

+
1

(
ç

%
C

@
@

A-
0

% D0
%

A

8-ê 9?
C

2
-2

3
%

^

8

"9
$

)

H f
3

L
6

$
(

- 8-

(6 -6)"1

C
j

6
-

2

% p
%

|
/

=
+

1
%

J
%

4
j

%
l

4

7
• Inefficient
• Difficult to scale
• Misses the point

2

66664

0
1
4
1
1

3

77775

2

66664

0
1
1
2
1

3

77775

2

66664

0
1
4
5
1

3

77775

2

66664

0
1
4
1
2

3

77775

2

66664

1
0
1
1
2

3

77775

2

66664

1
0
2
2
2

3

77775

2

66664

0
1
4
5
3

3

77775

2

66664

0
1
4
1
1

3

77775

2

66664

0
1
1
2
1

3

77775

2

66664

0
1
4
5
1

3

77775

2

66664

0
1
4
1
2

3

77775

2

66664

1
0
1
1
2

3

77775

2

66664

1
0
2
2
2

3

77775

2

66664

0
1
4
5
3

3

77775

2

66664

0
1
4
1
1

3

77775

2

66664

0
1
1
2
1

3

77775

2

66664

0
1
4
5
1

3

77775

2

66664

0
1
4
1
2

3

77775

2

66664

1
0
1
1
2

3

77775

2

66664

1
0
2
2
2

3

77775

2

66664

0
1
4
5
3

3

77775

2

66664

0
1
4
1
1

3

77775

2

66664

0
1
1
2
1

3

77775

2

66664

0
1
4
5
1

3

77775

2

66664

0
1
4
1
2

3

77775

2

66664

1
0
1
1
2

3

77775

2

66664

1
0
2
2
2

3

77775

2

66664

0
1
4
5
3

3

77775

Graph
convolutions

2

666666666666664

.

.

.

.

.

.

.

.

.

.

3

777777777777775

2

666666666666664

.

.

.

.

.

.

.

.

.

.

3

777777777777775

2

666666666666664

.

.

.

.

.

.

.

.

.

.

3

777777777777775

2

66666666666666664

.

.

.

.

.

.

.

.

.

.

.

3

77777777777777775

2

666666666666664

.

.

.

.

.

.

.

.

.

.

3

777777777777775

2

666666666666664

.

.

.

.

.

.

.

.

.

.

3

777777777777775

2

666666666666664

.

.

.

.

.

.

.

.

.

.

3

777777777777775

2

666666666666664

.

.

.

.

.

.

.

.

.

.

3

777777777777775

2

666666666666664

.

.

.

.

.

.

.

.

.

.

3

777777777777775

2

666666666666664

.

.

.

.

.

.

.

.

.

.

3

777777777777775

2

66666666666666664

.

.

.

.

.

.

.

.

.

.

.

3

77777777777777775

2

666666666666664

.

.

.

.

.

.

.

.

.

.

3

777777777777775

2

666666666666664

.

.

.

.

.

.

.

.

.

.

3

777777777777775

2

666666666666664

.

.

.

.

.

.

.

.

.

.

3

777777777777775

2

666666666666664

.

.

.

.

.

.

.

.

.

.

3

777777777777775

2

666666666666664

.

.

.

.

.

.

.

.

.

.

3

777777777777775

2

666666666666664

.

.

.

.

.

.

.

.

.

.

3

777777777777775

2

66666666666666664

.

.

.

.

.

.

.

.

.

.

.

3

77777777777777775

2

666666666666664

.

.

.

.

.

.

.

.

.

.

3

777777777777775

2

666666666666664

.

.

.

.

.

.

.

.

.

.

3

777777777777775

2

666666666666664

.

.

.

.

.

.

.

.

.

.

3

777777777777775

2

666666666666664

.

.

.

.

.

.

.

.

.

.

3

777777777777775

2

666666666666664

.

.

.

.

.

.

.

.

.

.

3

777777777777775

2

666666666666664

.

.

.

.

.

.

.

.

.

.

3

777777777777775

2

66666666666666664

.

.

.

.

.

.

.

.

.

.

.

3

77777777777777775

2

666666666666664

.

.

.

.

.

.

.

.

.

.

3

777777777777775

2

666666666666664

.

.

.

.

.

.

.

.

.

.

3

777777777777775

2

666666666666664

.

.

.

.

.

.

.

.

.

.

3

777777777777775

Mean
pool

2

666666666666664

.

.

.

.

.

.

.

.

.

.

3

777777777777775

MLP

MLP

�X

�Z

1

01

1

1

10

1

0

0

0

1

XL

ZL

1

1

0

1

1

0

1

0

0

1

0

1

1

1

0

1

0

1

0

1

1

0

0

0

0

1

0

0

1

11 X
X

X
X

Z
Z

Z
Z

X
X

Z
Z

1

10

1

1

01

0

1

00

1

1

10

1

0

0

0

0

0

0

1

1

0

0 1

1

10

1

1

01

0

1

00

1

1

10

1

0

0

0

0

0

1

1

1

1

0 1

1

00

1

1

10

1

0

0

1

1

ZL

1

1

0

1

0

0

1

0

0

0

0

1

1

0

0

0

1

1

1

0

0

1

1

1

1

0

2

66664

0
1
4
1
1

3

77775

2

66664

0
1
1
2
1

3

77775

2

66664

0
1
4
5
1

3

77775

2

66664

0
1
4
1
2

3

77775

2

66664

1
0
1
1
2

3

77775

2

66664

1
0
2
2
2

3

77775

2

66664

0
1
4
5
3

3

77775

y

t

x

Recent work: Graph neural network decoder

arXiv:2307.01241

Data-driven decoding of quantum error correcting codes using graph neural networks

Moritz Lange,1 Pontus Havström,1 Basudha Srivastava,1 Valdemar Bergentall,1
Karl Hammar,1 Olivia Heuts,1 Evert van Nieuwenburg,2, ⇤ and Mats Granath1, †

1Department of Physics, University of Gothenburg, SE-41296 Gothenburg, Sweden
2Leiden Inst. of Advanced Computer Science, Leiden University, Leiden, Netherlands

(Dated:)

To leverage the full potential of quantum error-correcting stabilizer codes it is crucial to have
an efficient and accurate decoder. Accurate, maximum likelihood, decoders are computationally
very expensive whereas decoders based on more efficient algorithms give sub-optimal performance.
In addition, the accuracy will depend on the quality of models and estimates of error rates for
idling qubits, gates, measurements, and resets, and will typically assume symmetric error channels.
In this work, instead, we explore a model-free, data-driven, approach to decoding, using a graph
neural network (GNN). The decoding problem is formulated as a graph classification task in which
a set of stabilizer measurements is mapped to an annotated detector graph for which the neural
network predicts the most likely logical error class. We show that the GNN-based decoder can
outperform a matching decoder for circuit level noise on the surface code given only simulated
experimental data, even if the matching decoder is given full information of the underlying error
model. Although training is computationally demanding, inference is fast and scales approximately
linearly with the space-time volume of the code. We also find that we can use large, but more
limited, datasets of real experimental data [Google Quantum AI, Nature 614, 676 (2023)] for the
repetition code, giving decoding accuracies that are on par with minimum weight perfect matching.
The results show that a purely data-driven approach to decoding may be a viable future option for
practical quantum error correction, which is competitive in terms of speed, accuracy, and versatility.

I. INTRODUCTION

Quantum Error Correction (QEC) is foreseen to be a
vital component in the development of practical quan-
tum computing [1–5]. The need for QEC arises due to
the susceptibility of quantum information to noise, which
can rapidly accumulate and corrupt the final output. Un-
like noise mitigation schemes where errors are reduced
by classical post-processing [6–8], QEC methods encode
quantum information in a way that allows for the de-
tection and correction of errors without destroying the
information itself. A prominent framework for this are
topological stabilizer codes, such as the surface code, for
which the logical failure rates can be systematically sup-
pressed by increasing the size of the code if the intrinsic
error rates are below some threshold value [9–13].

Stabilizer codes are based on a set of commutative, typ-
ically local, measurements that project an n-qubit state
to a lower dimensional code space representing one or
more logical qubits. Errors take the state out of the code
space and are then indicated by a syndrome, correspond-
ing to stabilizer violations. The syndrome needs to be
interpreted in order to gauge whether a logical bit or
phase flip may have been incurred on the logical qubit.
Interpreting the syndrome, to predict the most likely log-
ical error, requires both a decoder algorithm and, tradi-
tionally, a model of the qubit error channels. The fact
that measurements may themselves be noisy, makes this
interpretation additionally challenging [10, 13].

⇤ evert.vn@lorentz.leidenuniv.nl
† mats.granath@physics.gu.se

Efforts are under way to realize stabilizer codes exper-
imentally using various qubit architectures [14–30]. In
[28], code distance 3 and 5 surface codes were imple-
mented, using 17 and 49 superconducting qubits, respec-
tively. After initialization of the qubits, repeated stabi-
lizer measurements are performed over a given number of
cycles capped by a final round of single qubit measure-
ments. The results are then compared with the initial
state to determine whether errors have caused a logical
bit- (or phase-) error. The decoder analyses the collected
sets of syndrome measurements in post-processing, where
the fraction of correct predictions gives a measure of the
logical accuracy. The better the decoder, the higher the
coherence time of the logical qubit, and in [28] a compu-
tationally costly tensor network based decoder was used
to maximize the logical fidelity of the distance 5 code
compared to the distance 3 code. However, with the
objective of moving from running and benchmarking a
quantum memory to using it for universal quantum com-
putation, it will be necessary to do error correction both
with high accuracy and in real time.

In the present work, we explore the viability of us-
ing a purely data-driven approach to decoding, based on
the potential of generating large amounts of experimen-
tal data. We use a graph neural network (GNN) which
is well suited for addressing this type of data. Namely,
a single data point, as in [28], consists of a set of “detec-
tors”, i.e., changes in stabilizer measurements from one
cycle to the next, together with a label indicating the
measured logical bit- or phase-flip error. This can be
represented as a labeled graph with nodes that are an-
notated by the information on the type of stabilizer and
the space-time position of the detector, as shown in Fig-

ar
X

iv
:2

30
7.

01
24

1v
1

 [q
ua

nt
-p

h]
 3

 Ju
l 2

02
3

Fast inference? => in time error correction
High Accuracy => high logical fidelityTailored to experimental input

+ Isak Bengtsson

1

01

1

1

10

1

0

0

0

1

XL

ZL

1

1

0

1

1

0

1

0

0

1

0

1

1

1

0

1

0

1

0

1

1

0

0

0

0

1

0

0

1

11 X
X

X
X

Z
Z

Z
Z

X
X

Z
Z

1

10

1

1

01

0

1

00

1

1

10

1

0

0

0

0

0

0

1

1

0

0 1

1

10

1

1

01

0

1

00

1

1

10

1

0

0

0

0

0

1

1

1

1

0 1

1

00

1

1

10

1

0

0

1

1

ZL

1

1

0

1

0

0

1

0

0

0

0

1

1

0

0

0

1

1

1

0

0

1

1

1

1

0

2

66664

0
1
4
1
1

3

77775

2

66664

0
1
1
2
1

3

77775

2

66664

0
1
4
5
1

3

77775

2

66664

0
1
4
1
2

3

77775

2

66664

1
0
1
1
2

3

77775

2

66664

1
0
2
2
2

3

77775

2

66664

0
1
4
5
3

3

77775

y

t

x

Memory-Z experiment
1. Simple product state prepared
2. Stabilizers are measured over several rounds => changes=detector events

 Perfect Z-stabilizers in first and final rounds
3. Final individual qubit measurement
4. Measured logical coset of error (given by parity change on designated edge)

 compared to decoder prediction
Gives logical fidelity of the quantum memory

• Detector events = graph nodes
 space-time location and type as node feature vector
• Edges ~ inverse euclidean (or manhattan) distance
• Label: binary class, logical bit-flip or not
 (or logical phase-flip or not)

 Pruning of edges based on edge weights

GNN decoder data

3

2

66664

0
1
4
1
1

3

77775

2

66664

0
1
1
2
1

3

77775

2

66664

0
1
4
5
1

3

77775

2

66664

0
1
4
1
2

3

77775

2

66664

1
0
1
1
2

3

77775

2

66664

1
0
2
2
2

3

77775

2

66664

0
1
4
5
3

3

77775

2

66664

0
1
4
1
1

3

77775

2

66664

0
1
1
2
1

3

77775

2

66664

0
1
4
5
1

3

77775

2

66664

0
1
4
1
2

3

77775

2

66664

1
0
1
1
2

3

77775

2

66664

1
0
2
2
2

3

77775

2

66664

0
1
4
5
3

3

77775

2

66664

0
1
4
1
1

3

77775

2

66664

0
1
1
2
1

3

77775

2

66664

0
1
4
5
1

3

77775

2

66664

0
1
4
1
2

3

77775

2

66664

1
0
1
1
2

3

77775

2

66664

1
0
2
2
2

3

77775

2

66664

0
1
4
5
3

3

77775

2

66664

0
1
4
1
1

3

77775

2

66664

0
1
1
2
1

3

77775

2

66664

0
1
4
5
1

3

77775

2

66664

0
1
4
1
2

3

77775

2

66664

1
0
1
1
2

3

77775

2

66664

1
0
2
2
2

3

77775

2

66664

0
1
4
5
3

3

77775

Graph
convolutions

2

666666666666664

.

.

.

.

.

.

.

.

.

.

3

777777777777775

2

666666666666664

.

.

.

.

.

.

.

.

.

.

3

777777777777775

2

666666666666664

.

.

.

.

.

.

.

.

.

.

3

777777777777775

2

66666666666666664

.

.

.

.

.

.

.

.

.

.

.

3

77777777777777775

2

666666666666664

.

.

.

.

.

.

.

.

.

.

3

777777777777775

2

666666666666664

.

.

.

.

.

.

.

.

.

.

3

777777777777775

2

666666666666664

.

.

.

.

.

.

.

.

.

.

3

777777777777775

2

666666666666664

.

.

.

.

.

.

.

.

.

.

3

777777777777775

2

666666666666664

.

.

.

.

.

.

.

.

.

.

3

777777777777775

2

666666666666664

.

.

.

.

.

.

.

.

.

.

3

777777777777775

2

66666666666666664

.

.

.

.

.

.

.

.

.

.

.

3

77777777777777775

2

666666666666664

.

.

.

.

.

.

.

.

.

.

3

777777777777775

2

666666666666664

.

.

.

.

.

.

.

.

.

.

3

777777777777775

2

666666666666664

.

.

.

.

.

.

.

.

.

.

3

777777777777775

2

666666666666664

.

.

.

.

.

.

.

.

.

.

3

777777777777775

2

666666666666664

.

.

.

.

.

.

.

.

.

.

3

777777777777775

2

666666666666664

.

.

.

.

.

.

.

.

.

.

3

777777777777775

2

66666666666666664

.

.

.

.

.

.

.

.

.

.

.

3

77777777777777775

2

666666666666664

.

.

.

.

.

.

.

.

.

.

3

777777777777775

2

666666666666664

.

.

.

.

.

.

.

.

.

.

3

777777777777775

2

666666666666664

.

.

.

.

.

.

.

.

.

.

3

777777777777775

2

666666666666664

.

.

.

.

.

.

.

.

.

.

3

777777777777775

2

666666666666664

.

.

.

.

.

.

.

.

.

.

3

777777777777775

2

666666666666664

.

.

.

.

.

.

.

.

.

.

3

777777777777775

2

66666666666666664

.

.

.

.

.

.

.

.

.

.

.

3

77777777777777775

2

666666666666664

.

.

.

.

.

.

.

.

.

.

3

777777777777775

2

666666666666664

.

.

.

.

.

.

.

.

.

.

3

777777777777775

2

666666666666664

.

.

.

.

.

.

.

.

.

.

3

777777777777775

Mean
pool

2

666666666666664

.

.

.

.

.

.

.

.

.

.

3

777777777777775

MLP

MLP

�X

�Z

Figure 2. Schematic of the GNN decoder. It takes as input an annotated detector graph, c.f. Figure 1. Several layers of graph
convolutional operations (following Eqn. 3) transform each node feature vector. (The empty circle shows the message passing
to this particular node from neighboring nodes on the graph.) Next, a mean-pooling operation averages all the node feature
vectors into a single graph embedding, which is independent of the size of the graph. Finally, the latter is passed through two
separate dense networks to give two binary class predictors, corresponding to the logical X and Z labels, respectively. (For
details see Appendix A.)

Pauli frame and commutes with the logical operators. In
general there may be additional non-symmetric channels
(see for example [19]), but we will assume that the data
(as in [28]) does not resolve such channels.

The probabilities of logical error, Pi, will be quanti-
fied by the complete set of syndrome measurements and
depend on single and multi-qubit error channels as well
as measurement and reset errors. It is the task of the
decoder to quantify these in order to maximize the ef-
fectiveness of the error correction. Traditionally this is
done through computational algorithms that use a spe-
cific error model. The framework that most decoders
are based on uses independent and identically distributed
symmetric noise acting on individual qubits, possibly, for
circuit-level noise, complemented by two-qubit gate er-
rors, faulty measurements and ancilla qubit reset errors.
Maximum-likelihood decoders [35–40] aim to explicitly
account for all possible error configurations that are con-
sistent with the measured syndromes, with their respec-
tive probabilities given by the assumed error model. The
full set of error configurations fall in four different cosets
that map to each other by the logical operators of the
code, thus directly providing an estimate of the prob-
abilities Pi that is limited only by the approximations
involved in the calculation and the error model. Even
though such decoders may be useful for benchmarking
and optimizing the theoretical performance of stabilizer
codes [28], they are computationally too demanding for
real time operation, even for small codes.

The more standard decoders instead are based on
the minimum weight perfect matching (MWPM) algo-
rithm [41–46]. Such a decoder aims to find the single,
most likely, configuration of single qubit errors consis-

tent with the set of measured stabilizers. Detectors are
mapped to nodes of a graph with edges that are weighted
by the probability of the pair of nodes. For codes where
nodes appear in pairs (such as the repetition or sur-
face code), the most likely error corresponds to pairwise
matching such that the total weight of the edges is mini-
mized. This algorithm is fast, in practice scaling approx-
imately linearly with the size of the graph (see Figure
8). Nevertheless, it has several short-comings that limits
accuracy and applicability: 1) Approximate handling of
crossing edges (such as coinciding X and Z errors) means
that the effective error model is oversimplified. 2) Except
at very low error rates, degeneracies of less likely error
configurations are ignored. 3) For models where a sin-
gle error may give rise to more than two detector events,
more sophisticated algorithms are needed [47–53]. These
shortcomings can be partially addressed by more sophis-
ticated approaches such as counting multiplicity or using
belief propagation [54–57], but often at the cost of added
computational complexity. Other examples of decoder al-
gorithms are based on decoding from small to large scale,
such as cellular-automata [58–60], renormalization group
[61], or union-find [49, 62]. The latter, in particular, is
very efficient, but at the cost of sub-optimal performance.

II.1. Related work

A number of different deep learning based decoder al-
gorithms have also been formulated, based on supervised
learning, reinforcement learning, and genetic neural al-
gorithms [63–83]. Focusing on the works on the sur-
face code and based on supervised learning, these can

Graph neural networks (GNN)
• Neural networks suited for graph structured data

McCallum et al. 2000

Examples
Antibiotic discovery
graph regression

Cora dataset, citation network
Node classification

%[
$

C
å

-

)
K

qU
1

"0
.

%
H

$"1

[I
2

)

é
^

V
"6

`
$;

)

-
%

6
%

2
%

(
6

T
2

(

12
h

6
2

-

2
#

$

h
%

'
2

>
*-

26

%
-

%

-2

"#
)

"
"

1Vyj 6"

<

p
K

D
/
A

?

(

401 *- Å
)=

8
9

(

"6 -*

Data object: Decorated graph

.

.

.

.

.

.

.

.

.

.
.
.
.
.
.

.

.

.

.

.

.

.

.

.

.

Node feature vectors

Edge weights
(or vector)

eij

xj

xi

Graph convolutional layers

A comprehensive survey on graph neural
networks
Wu et al. 2019

Grid: Standard
convolutional filter of
fixed size neighborhood

Graph: Convolutional
filter adapted to varying
neighborhood

xi

Semi-supervised classification with graph
convolutional networks
Kipf and Wellling, 2016

equations

Mats Granath, Fysik, Natfak

March 2024

1 Introduction

⇡C = (p/3)n(1� p)N�n = (1� p)N (p/3
1�p)

n = (1� p)Ne�n/T

1/T = � ln(p/3
1�p)

PE ⇠ ZE =
P

C2E e�nC/T

x0
i = �(W1xi +W2

P
j eijxj)

1

Simple graph convolution:

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

x'i

W1 and W2 : n’ x n trainable weight matrices

Graph pooling
For graph classification output should be
independent of number of nodes

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. Graph embedding +
Standard dense network classifier

equations

Mats Granath, Fysik, Natfak

March 2024

1 Introduction

⇡C = (p/3)n(1� p)N�n = (1� p)N (p/3
1�p)

n = (1� p)Ne�n/T

1/T = � ln(p/3
1�p)

PE ⇠ ZE =
P

C2E e�nC/T

x0
i = �(W1xi +W2

P
j eijxj)

x0 = 1
#nodes

P
i xi

1

xi

x’

GNN decoder network architecture
10

Layer din dout

GraphConv1 5 32
GraphConv2 32 128
GraphConv3 128 256
GraphConv4 256 512
GraphConv5 512 512
GraphConv6 512 256
GraphConv7 256 256

Dense1 X 256 128
Dense2 X 128 181
Dense3 X 128 32
Dense4 X 32 1
Dense1 Z 256 128
Dense2 Z 128 181
Dense3 Z 128 32
Dense4 Z 32 1

Table I. Overview over the input and output dimension of the
graph convolutional and dense layers of the GNN decoder.

ACKNOWLEDGMENTS

We acknowledge financial support from the Knut and
Alice Wallenberg Foundation through the Wallenberg
Centre for Quantum Technology (WACQT). Computa-
tions were enabled by resources provided by the National
Academic Infrastructure for Supercomputing in Sweden
(NAISS) and the Swedish National Infrastructure for
Computing (SNIC) at Chalmers Centre for Computa-
tional Science and Engineering (C3SE), partially funded
by the Swedish Research Council through grant agree-
ments no. 2022-06725 and no. 2018-05973. We thank
Viktor Rehnberg and Hampus Linander for technical sup-
port. This work was also supported by the Dutch Na-
tional Growth Fund (NGF), as part of the Quantum
Delta NL programme.

Appendix A: GNN architecture and training

Figure 9 displays the architecture of the GNN decoder.
The node features are sent through 7 subsequent graph
convolutional layers (Equation 3). The node features are
passed through a rectified linear unit (ReLU) activation
function (which corresponds to chopping negative val-
ues) after each layer. After the graph convolutional lay-
ers, the node features from all nodes are pooled into one
high-dimensional vector by computing the mean across
all nodes. This vector is then cloned and sent to two
identical fully connected neural networks. Both heads
consist of 4 dense layers which map the pooled node fea-
ture vector down to one real-valued number which is out-
put in the range 0 to 1 through a sigmoid function. The
input and output dimension din and dout of the graph
convolutional and dense layers can be found in Table I.

Networks are trained on NVIDIA Tesla A100 HGX
GPU’s using the python multiprocessing module to gen-
erate data in parallel on a CPU. For gradient descent,

5
Number
of nodes

graph convolution + ReLu
mean pooling
dense layer + ReLu
dense layer + sigmoid

.

Number
of nodes

...

. . .

Number
of nodes

Clone
λx

...

...

λz

Figure 9. Schematic of the GNN architecture, with details
in Table I. The same architecture is used for all the results,
except that for the repetition code there is only one output
head. Also the input dimension is two (2D space-time coordi-
nate) for the repetition code and four (two types of stabilizers,
and 2D spatial coordinate) for the surface code with perfect
stabilizers.

100 200 300 400 500 600
Training epoch

0.995

0.996

0.997

0.998

0.999

1.000

L
og

ic
al

ac
cu

ra
cy

Training

Test

dt = 3

dt = 5

dt = 7

dt = 9

dt = 11

Figure 10. Example of training and validation accuracy versus
the number of epochs of training for code distance 5. One
epoch corresponds to training with a dataset containing 5 ·
106 detector graphs of different error rates, as in Figure 4.
The test set is a fixed dataset of the same type containing
5 · 104 data points. After each epoch the oldest 25% of the
dataset is replaced with new data to avoid overfitting to the
training data. Kink at 300 epochs correspond to decrement
of the learning rate, whereas the spikes are due to network
fluctuations.

10

Layer din dout

GraphConv1 5 32
GraphConv2 32 128
GraphConv3 128 256
GraphConv4 256 512
GraphConv5 512 512
GraphConv6 512 256
GraphConv7 256 256

Dense1 X 256 128
Dense2 X 128 181
Dense3 X 128 32
Dense4 X 32 1
Dense1 Z 256 128
Dense2 Z 128 181
Dense3 Z 128 32
Dense4 Z 32 1

Table I. Overview over the input and output dimension of the
graph convolutional and dense layers of the GNN decoder.

ACKNOWLEDGMENTS

We acknowledge financial support from the Knut and
Alice Wallenberg Foundation through the Wallenberg
Centre for Quantum Technology (WACQT). Computa-
tions were enabled by resources provided by the National
Academic Infrastructure for Supercomputing in Sweden
(NAISS) and the Swedish National Infrastructure for
Computing (SNIC) at Chalmers Centre for Computa-
tional Science and Engineering (C3SE), partially funded
by the Swedish Research Council through grant agree-
ments no. 2022-06725 and no. 2018-05973. We thank
Viktor Rehnberg and Hampus Linander for technical sup-
port. This work was also supported by the Dutch Na-
tional Growth Fund (NGF), as part of the Quantum
Delta NL programme.

Appendix A: GNN architecture and training

Figure 9 displays the architecture of the GNN decoder.
The node features are sent through 7 subsequent graph
convolutional layers (Equation 3). The node features are
passed through a rectified linear unit (ReLU) activation
function (which corresponds to chopping negative val-
ues) after each layer. After the graph convolutional lay-
ers, the node features from all nodes are pooled into one
high-dimensional vector by computing the mean across
all nodes. This vector is then cloned and sent to two
identical fully connected neural networks. Both heads
consist of 4 dense layers which map the pooled node fea-
ture vector down to one real-valued number which is out-
put in the range 0 to 1 through a sigmoid function. The
input and output dimension din and dout of the graph
convolutional and dense layers can be found in Table I.

Networks are trained on NVIDIA Tesla A100 HGX
GPU’s using the python multiprocessing module to gen-
erate data in parallel on a CPU. For gradient descent,

5

Number
of nodes

graph convolution + ReLu
mean pooling
dense layer + ReLu
dense layer + sigmoid

.

Number
of nodes

...

. . .

Number
of nodes

Clone
λx

...

...

λz

Figure 9. Schematic of the GNN architecture, with details
in Table I. The same architecture is used for all the results,
except that for the repetition code there is only one output
head. Also the input dimension is two (2D space-time coordi-
nate) for the repetition code and four (two types of stabilizers,
and 2D spatial coordinate) for the surface code with perfect
stabilizers.

100 200 300 400 500 600
Training epoch

0.995

0.996

0.997

0.998

0.999

1.000

L
og

ic
al

ac
cu

ra
cy

Training

Test

dt = 3

dt = 5

dt = 7

dt = 9

dt = 11

Figure 10. Example of training and validation accuracy versus
the number of epochs of training for code distance 5. One
epoch corresponds to training with a dataset containing 5 ·
106 detector graphs of different error rates, as in Figure 4.
The test set is a fixed dataset of the same type containing
5 · 104 data points. After each epoch the oldest 25% of the
dataset is replaced with new data to avoid overfitting to the
training data. Kink at 300 epochs correspond to decrement
of the learning rate, whereas the spikes are due to network
fluctuations.

GNN on circuit-level noise
Lacking sufficient experimental data we use simulated “experiments”

11

a Dp Dp

b Dp Dp

c Dp Dp

d Dp Dp

|0i Xp Dp Dp Dp Dp Xp

Figure 11. Quantum circuit for measuring the weight-four
stabilizer Zabcd under circuit-level noise.

e Dp Dp

f Dp Dp

g Dp Dp

h Dp Dp

|0i Xp H Dp Dp Dp Dp Dp H Dp Xp

Figure 12. Quantum circuit for measuring the weight-four
stabilizer Xefgh under circuit-level noise.

samples are batched in batches of size 103. The learn-
ing rate is set to 10�4 and decreased manually to 10�5,
whenever the validation accuracy reached a plateau. An

example of a training history for d = 5 and varying num-
ber of surface code cycles dt is shown in Figure 10. For
this example, with dt = 5, 100 epochs of training takes
approximately 10 hours. The code is available at [116].

Appendix B: Stabilizer circuits and error model for
circuit-level noise

Quantum circuits for weight-four Z- (X-) stabilizers
of the surface code are displayed in Figure 11 (12). The
gate set used for the stabilizer measurements consists of
the Hadamard gate (H), and the CNOT gate. Under
circuit-level noise, single-qubit depolarizing noise gate Dp

(which applies gate �i, i 2 {X, Y, Z} where any of the
gates is applied with probability p/3, and I with proba-
bility 1�p) acts on the data qubits before each stabilizer
measurement cycle and on each target qubit after single-
qubit gates. Two-qubit depolarizing noise gates (which
apply gate �i�j , i, j 2 {I, X, Y, Z}, where II is acted
on with probability 1 � p, and the rest with probability
p/15) act on the two qubits involved after every two-
qubit gate. Furthermore, each qubit suffers from reset-
and measurement-error with probability p, displayed by
operators Xp when measuring and resetting in the com-
putational basis.

[1] P. W. Shor, Scheme for reducing decoherence in quan-
tum computer memory, Physical Review A 52, R2493
(1995).

[2] A. M. Steane, Error Correcting Codes in Quantum The-
ory, Physical Review Letters 77, 793 (1996).

[3] D. Gottesman, Stabilizer Codes and Quantum Error
Correction (1997), arXiv:quant-ph/9705052.

[4] B. M. Terhal, Quantum error correction for quantum
memories, Reviews of Modern Physics 87, 307 (2015).

[5] S. M. Girvin, Introduction to quantum error correction
and fault tolerance (2021), arXiv:2111.08894.

[6] Y. Kim, A. Eddins, S. Anand, K. X. Wei, E. van den
Berg, S. Rosenblatt, H. Nayfeh, Y. Wu, M. Zaletel,
K. Temme, and A. Kandala, Evidence for the utility
of quantum computing before fault tolerance, Nature
618, 500 (2023).

[7] K. Temme, S. Bravyi, and J. M. Gambetta, Error miti-
gation for short-depth quantum circuits, Physical review
letters 119, 180509 (2017).

[8] Y. Li and S. C. Benjamin, Efficient variational quan-
tum simulator incorporating active error minimization,
Physical Review X 7, 021050 (2017).

[9] S. B. Bravyi and A. Y. Kitaev, Quantum codes on a
lattice with boundary (1998), arXiv:quant-ph/9811052.

[10] E. Dennis, A. Kitaev, A. Landahl, and J. Preskill,
Topological quantum memory, Journal of Mathemati-
cal Physics 43, 4452 (2002).

[11] A. Kitaev, Fault-tolerant quantum computation by
anyons, Annals of Physics 303, 2 (2003).

[12] R. Raussendorf and J. Harrington, Fault-Tolerant
Quantum Computation with High Threshold in Two Di-

mensions, Physical Review Letters 98, 190504 (2007).
[13] A. G. Fowler, M. Mariantoni, J. M. Martinis, and A. N.

Cleland, Surface codes: Towards practical large-scale
quantum computation, Physical Review A 86, 032324
(2012).

[14] J. Kelly, R. Barends, A. G. Fowler, A. Megrant, E. Jef-
frey, T. C. White, D. Sank, J. Y. Mutus, B. Campbell,
Y. Chen, Z. Chen, B. Chiaro, A. Dunsworth, I.-C. Hoi,
C. Neill, P. J. J. O’Malley, C. Quintana, P. Roushan,
A. Vainsencher, J. Wenner, A. N. Cleland, and J. M.
Martinis, State preservation by repetitive error detec-
tion in a superconducting quantum circuit, Nature 519,
66 (2015).

[15] M. Takita, A. W. Cross, A. D. Córcoles, J. M. Chow,
and J. M. Gambetta, Experimental Demonstration of
Fault-Tolerant State Preparation with Superconducting
Qubits, Physical Review Letters 119, 180501 (2017).

[16] J. R. Wootton and D. Loss, Repetition code of 15 qubits,
Phys. Rev. A 97, 052313 (2018).

[17] J. R. Wootton, Benchmarking near-term devices with
quantum error correction, Quantum Science and Tech-
nology 5, 044004 (2020).

[18] C. K. Andersen, A. Remm, S. Lazar, S. Krinner,
N. Lacroix, G. J. Norris, M. Gabureac, C. Eichler, and
A. Wallraff, Repeated quantum error detection in a sur-
face code, Nature Physics 16, 875 (2020).

[19] K. J. Satzinger et al., Realizing topologically ordered
states on a quantum processor, Science 374, 1237
(2021).

[20] L. Egan, D. M. Debroy, C. Noel, A. Risinger, D. Zhu,
D. Biswas, M. Newman, M. Li, K. R. Brown, M. Cetina,

11

a Dp Dp

b Dp Dp

c Dp Dp

d Dp Dp

|0i Xp Dp Dp Dp Dp Xp

Figure 11. Quantum circuit for measuring the weight-four
stabilizer Zabcd under circuit-level noise.

e Dp Dp

f Dp Dp

g Dp Dp

h Dp Dp

|0i Xp H Dp Dp Dp Dp Dp H Dp Xp

Figure 12. Quantum circuit for measuring the weight-four
stabilizer Xefgh under circuit-level noise.

samples are batched in batches of size 103. The learn-
ing rate is set to 10�4 and decreased manually to 10�5,
whenever the validation accuracy reached a plateau. An

example of a training history for d = 5 and varying num-
ber of surface code cycles dt is shown in Figure 10. For
this example, with dt = 5, 100 epochs of training takes
approximately 10 hours. The code is available at [116].

Appendix B: Stabilizer circuits and error model for
circuit-level noise

Quantum circuits for weight-four Z- (X-) stabilizers
of the surface code are displayed in Figure 11 (12). The
gate set used for the stabilizer measurements consists of
the Hadamard gate (H), and the CNOT gate. Under
circuit-level noise, single-qubit depolarizing noise gate Dp

(which applies gate �i, i 2 {X, Y, Z} where any of the
gates is applied with probability p/3, and I with proba-
bility 1�p) acts on the data qubits before each stabilizer
measurement cycle and on each target qubit after single-
qubit gates. Two-qubit depolarizing noise gates (which
apply gate �i�j , i, j 2 {I, X, Y, Z}, where II is acted
on with probability 1 � p, and the rest with probability
p/15) act on the two qubits involved after every two-
qubit gate. Furthermore, each qubit suffers from reset-
and measurement-error with probability p, displayed by
operators Xp when measuring and resetting in the com-
putational basis.

[1] P. W. Shor, Scheme for reducing decoherence in quan-
tum computer memory, Physical Review A 52, R2493
(1995).

[2] A. M. Steane, Error Correcting Codes in Quantum The-
ory, Physical Review Letters 77, 793 (1996).

[3] D. Gottesman, Stabilizer Codes and Quantum Error
Correction (1997), arXiv:quant-ph/9705052.

[4] B. M. Terhal, Quantum error correction for quantum
memories, Reviews of Modern Physics 87, 307 (2015).

[5] S. M. Girvin, Introduction to quantum error correction
and fault tolerance (2021), arXiv:2111.08894.

[6] Y. Kim, A. Eddins, S. Anand, K. X. Wei, E. van den
Berg, S. Rosenblatt, H. Nayfeh, Y. Wu, M. Zaletel,
K. Temme, and A. Kandala, Evidence for the utility
of quantum computing before fault tolerance, Nature
618, 500 (2023).

[7] K. Temme, S. Bravyi, and J. M. Gambetta, Error miti-
gation for short-depth quantum circuits, Physical review
letters 119, 180509 (2017).

[8] Y. Li and S. C. Benjamin, Efficient variational quan-
tum simulator incorporating active error minimization,
Physical Review X 7, 021050 (2017).

[9] S. B. Bravyi and A. Y. Kitaev, Quantum codes on a
lattice with boundary (1998), arXiv:quant-ph/9811052.

[10] E. Dennis, A. Kitaev, A. Landahl, and J. Preskill,
Topological quantum memory, Journal of Mathemati-
cal Physics 43, 4452 (2002).

[11] A. Kitaev, Fault-tolerant quantum computation by
anyons, Annals of Physics 303, 2 (2003).

[12] R. Raussendorf and J. Harrington, Fault-Tolerant
Quantum Computation with High Threshold in Two Di-

mensions, Physical Review Letters 98, 190504 (2007).
[13] A. G. Fowler, M. Mariantoni, J. M. Martinis, and A. N.

Cleland, Surface codes: Towards practical large-scale
quantum computation, Physical Review A 86, 032324
(2012).

[14] J. Kelly, R. Barends, A. G. Fowler, A. Megrant, E. Jef-
frey, T. C. White, D. Sank, J. Y. Mutus, B. Campbell,
Y. Chen, Z. Chen, B. Chiaro, A. Dunsworth, I.-C. Hoi,
C. Neill, P. J. J. O’Malley, C. Quintana, P. Roushan,
A. Vainsencher, J. Wenner, A. N. Cleland, and J. M.
Martinis, State preservation by repetitive error detec-
tion in a superconducting quantum circuit, Nature 519,
66 (2015).

[15] M. Takita, A. W. Cross, A. D. Córcoles, J. M. Chow,
and J. M. Gambetta, Experimental Demonstration of
Fault-Tolerant State Preparation with Superconducting
Qubits, Physical Review Letters 119, 180501 (2017).

[16] J. R. Wootton and D. Loss, Repetition code of 15 qubits,
Phys. Rev. A 97, 052313 (2018).

[17] J. R. Wootton, Benchmarking near-term devices with
quantum error correction, Quantum Science and Tech-
nology 5, 044004 (2020).

[18] C. K. Andersen, A. Remm, S. Lazar, S. Krinner,
N. Lacroix, G. J. Norris, M. Gabureac, C. Eichler, and
A. Wallraff, Repeated quantum error detection in a sur-
face code, Nature Physics 16, 875 (2020).

[19] K. J. Satzinger et al., Realizing topologically ordered
states on a quantum processor, Science 374, 1237
(2021).

[20] L. Egan, D. M. Debroy, C. Noel, A. Risinger, D. Zhu,
D. Biswas, M. Newman, M. Li, K. R. Brown, M. Cetina,

Depolarizing single qubit idle and two-qubit gate errors,
and reset and readout errors

ZZZZ stabilizer

XXXX stabilizer

Training
• One network for each code distance d and number of cycles dt
• Range of training error rates p=1.0-5.0 x 10-3

• Data generated in large batches of 10,000-25,000 graphs (as much as can fit on the GPU memory)
• No reuse of data (no risk to overfit)
• Up to one week training on one Nvidia A100
• Up to 1010 datapoints

Examples of a few training curves

1 “epoch” is (arbitrarily) 107 graphs

Test
Benchmarked against matching (MWPM) and belief-matching at p=1.0 x 10-3

• GNN probably close to optimal (maximum-likelihood) decoder for small d
• Matching decoders know the error model, the GNN decoder does not
• Scaling to larger d is challenging, work in progress using larger networks

How close to optimal is it?

GNN as a maximum-likelihood decoder
 work in progress

-
FG · E#

A decoder that outputs correct class
propabilites will be optimal (Bayes
classifier)

Test optimality
preliminary results

1. Bin GNN data according to predicted class probability
2. Compare to actual failure rates

GNN estimates class probabilities accurately. Indication that it’s close to optimal.

Most likely failures
Failure count versus decoder confidence

Interestingly, syndromes with high and low decoder
confidence all contribute significantly to logical errors

Potential use-case: GNN as soft-output decoder
for concatenated codes

Of interest to output not only most likely class, but also the probability of failure

Yoked surface codes
Craig Gidney1, Michael Newman1, Peter Brooks2, and Cody Jones1

1Google Quantum AI, Santa Barbara, California 93117, USA
2Google, Sunnyvale, California 94089, USA
December 8, 2023

We nearly triple the number of logical qubits per physical qubit of surface codes
in the teraquop regime by concatenating them into high-density parity check codes.
These yoked surface codes are arrayed in a rectangular grid, with parity checks (yokes)
measured along each row, and optionally along each column, using lattice surgery. Our
construction assumes no additional connectivity beyond a nearest neighbor square qubit
grid operating at a physical error rate of 10≠3.

Contents
1 Introduction 1

2 Quantum parity check codes 3

3 Lattice surgery constructions 4

4 Complementary gaps 8

5 Benchmarking 10
5.1 Scaling approximations . 11
5.2 Numerics . 12
5.3 Footprint estimates . 13

6 Conclusion 15

7 Contributions 15

8 Acknowledgements 16

9 Data availability 16

A Noise model 19

B Y -type yokes 20

C Quantum multi-dimensional parity check codes 22

1 Introduction
The surface code is a leading quantum error correcting code for building large scale fault-tolerant
quantum computers because of its forgiving qubit quality and connectivity requirements [Fow+12].
The surface code’s major downside is its extremely demanding quantity requirements. At an error
Craig Gidney: craig.gidney@gmail.com
Michael Newman: mgnewman@google.com

1

ar
X

iv
:2

31
2.

04
52

2v
1

 [q
ua

nt
-p

h]
 7

 D
ec

 2
02

3

Hierarchical memories: Simulating quantum LDPC codes with local

gates

Christopher A. Pattison1, Anirudh Krishna2,3, and John Preskill1,4

1Institute for Quantum Information and Matter, California Institute of Technology, Pasadena, CA 91125
2Department of Computer Science, Stanford University, Stanford, CA, 94305

3Stanford Institute for Theoretical Physics, Stanford University, Stanford, CA, 94305
4AWS Center for Quantum Computing, Pasadena CA 91125

March 9, 2023

Abstract

Constant-rate low-density parity-check (LDPC) codes are promising candidates for constructing

efficient fault-tolerant quantum memories. However, if physical gates are subject to geometric-locality

constraints, it becomes challenging to realize these codes. In this paper, we construct a new family

of JN,K,DK codes, referred to as hierarchical codes, that encode a number of logical qubits K =
⌦(N/ log(N)2). The N th

element HN of this code family is obtained by concatenating a constant-rate

quantum LDPC code with a surface code; nearest-neighbor gates in two dimensions are sufficient to

implement the syndrome-extraction circuit CH

N and achieve a threshold. Below threshold the logical

failure rate vanishes superpolynomially as a function of the distance D(N). We present a bilayer

architecture for implementing CH

N , and estimate the logical failure rate for this architecture. Under

conservative assumptions, we find that the hierarchical code outperforms the basic encoding where all

logical qubits are encoded in the surface code.

1 Introduction

Quantum error-correcting codes encode quantum information in entangled states over many qubits. They
are defined by a set of operators called stabilizer generators. Errors can accumulate in the state due to
imperfect control and interactions with the environment. Stabilizer generators can be measured using
syndrome-extraction circuits; the outcome of these measurements are called syndromes, classical infor-
mation used to infer corrections to these errors. To minimize the probability of corrupting information
beyond recovery, it is imperative to minimize the points of failure in the syndrome-extraction circuit.
This can be realized by restricting the number of gates that each qubit interacts with and minimizing the
total space-time volume of this circuit. The extent to which this can be done depends on the choice of
error-correcting code and physical constraints.

Syndrome-extraction circuits are the workhorse of quantum memories, devices that can reliably store
qubits for some fixed duration. In this paper, we are concerned with designing memories that can encode
a growing number of qubits and simultaneously have a low probability of failure.1 We focus on their
design when qubits are embedded in a two-dimensional lattice and gates are subject to constraints on
geometric locality.

1
We leave fault-tolerant computation for future work.

1

ar
X

iv
:2

30
3.

04
79

8v
1

 [q
ua

nt
-p

h]
 8

 M
ar

 2
02

3

rate of 10≠3, it takes 1000 to 2000 physical qubits per logical qubit for the surface code to reach
error rates low enough to run classically intractable algorithms [Sho94; Fow+12; GE21; Hän+20;
Lit23].

There are many ideas in the field for reducing this overhead [TDB22; HB21; Bra11; Bre+17;
BG23; FGL20; LY20; Got13; KP13; TZ13; PK21; PK22; Bra+23; Xu+23], as well as bounds
on possible improvements [BT09; BPT10; BK22b; BK22a; Bas+23]. Constructions for reducing
overhead frequently require high-fidelity long-range connections, which can be difficult to engineer
in architectures like superconducting qubits. When restricting to nearest neighbor planar connec-
tivity, one strategy is to concatenate the surface code into an outer code with a higher ratio of
logical qubits to physical qubits [PKP23]. The surface code provides high quality qubits, which
the outer code can densely encode with increased protection, hopefully using fewer qubits than
simply expanding the surface codes directly. The surface code also provides mechanisms like lattice
surgery [FG18; Lit19] to perform operations between distant qubits.

We usually imagine that the overlying code should have a high code distance, a high code rate,
and low-density parity checks. Small parity checks provide two important advantages. First, their
syndrome extraction circuits are small and highly parallelizable [TDB22], so the noise injected
into the system while measuring checks is low. Second, their locality limits the damage caused
by correlated errors, sometimes for free [MC23]. However, requiring these properties together can
sometimes demand complex layouts and larger code block sizes to see improved performance.

Figure 1: From left to right: unyoked, 1D, and 2D yoked surface code patches. In each row of 1D yoked surface
codes, we measure multi-body logical X- and Z-type stabilizers. In 2D yoked surface codes, we additionally
measure multi-body logical X- and Z-type stabilizers in each column. The Z-type stabilizers are applied to a
permutation of the 2D code to commute with the X-type stabilizers. Grey patches represent overhead introduced
by the stabilizers (i.e. “yokes”). Dark patches represent the workspace required to measure the row/column
stabilizers. There is also overhead due to interstitial space between patches for lattice surgery. Concatenated
code parameters, along with approximate overall qubit footprints (including the various overheads) labeled
below. Note that the [[192, 176, 2]] outer code is a collection of eight [[24, 22, 2]] 1D parity check code blocks.
All logical qubits can be reliably stored for about a trillion operations assuming a physical error rate of 10≠3.
The relative savings of yoked surface codes over unyoked surface codes grows as the target error rate decreases.

In this paper, we use simple parity check codes as outer codes, focusing solely on achieving a high
coding rate and simple layout, see Figure 1. We refer to these outer parity checks as yokes. In 1D,
these consist of parity checks along each row of an array of surface codes [Ste96]. In 2D, they consist
of parity checks along each row and column of the array, up to qubit permutations. These outer
codes have distances two and four respectively which, by utilizing the soft information provided
by the inner surface codes [Pou06], double and quadruple the inner code distance. The inner
surface codes suppress error rates to levels that allow us to measure high-weight checks without
incurring significant noise. Furthermore, we can avoid damaging correlated errors introduced when
measuring high-weight checks by adding protection against them using a spacetime tradeoff during
lattice surgery.

Simulations of yoked surface codes can grow quite expensive. In the largest cases we consider,
we may want to compute millions of shots of hundreds of surface code patches over thousands of
rounds. Consequently, we perform two types of simplified simulations to estimate the overhead of
yoked surface codes. The first is a smaller, full circuit simulation of the inner codes concatenated
into a one-round simulation of the outer code. Specifically, we simulate many patches of surface

2

• Surface code concatenated with other low-density parity check (LDPC) code
• Outer code decoder (with matching or belief propagation) can use conditional inner code error propabilities

logical error rate pH(N) of {HN} is subexponential, but superpolynomial, in the distance D(N); for any
positive constants ↵,�, the logical failure probability pH(N) vanishes faster than any polynomial function
N�� but slower than any exponential function exp(�↵ ·N):

pH(N)

N��
N!1
����! 0 ,

pH(N)

exp(�↵ ·N)
N!1
����! 1 .

Having motivated why we are interested in HN , we return to the construction of CH

N . In Section 4, we
propose a novel bilayer architecture to implement it. We begin the section by presenting the syndrome-
extraction circuit Cn for the constant-rate Jn, k, d,�q,�gK LDPC code. Physical qubits are arranged in
two parallel layers, each a lattice of side length approximately L = ⇥(

p
n). To obtain the syndrome-

extraction circuit CH

N for the concatenated code, each of the W qubits in CQ
n is replaced by a rotated

surface code.

In Section 4.2, we describe how to arrange W = W(CQ
n) surface codes RS` in a bilayer architecture. Each

layer now has side length approximately 2L` qubits to accommodate the tiles. An instance of a single
layer is shown in Figure 1 (a). We assume access to nearest-neighbor physical Clifford operations and
SWAP gates of range R within a layer and Clifford operations between adjacent qubits in different layers.
These physical qubits are aggregated into Jd2` , 1, d`K codes RS`. See Figure 1 (b). There are 2L2 tiles
in total. Even though we are only implementing a quantum memory, we still need to understand how
to perform a limited set of logical operations on tiles to implement the syndrome-extraction circuit for
the outer code. The advantage of the bilayer architecture is that it allows for transversal CNOT and CZ

to implement logical CNOT and CZ respectively. We propose a new technique to perform logical SWAP

operations between tiles. This yields all required logical Clifford operations between tiles to perform
syndrome-extraction for the outer code.

We note that the existence of a threshold does not depend on using the bilayer architecture. For ex-
ample, tiles can be arranged in a single layer and Clifford gates can be implemented via lattice surgery
[Lit19, HFDVM12]. For an alternative implementation in the context of measurement-based quantum
computation, see [BDM+21]. Although we do not prove it here, it is possible to show that a threshold
exists also in this setting using similar techniques.

(a) (b)

Figure 1: The bilayer architecture used to implement the syndrome-extraction circuit CH

N for the hierarchical code HN .

(a) represents a single layer of the bilayer architecture. Colored dots represent syndrome qubits and gray dots represent

data qubits. Transparent dots represent inactive qubits. At any given time step, the qubits that participate in the circuit

are depicted as opaque dots and form a lattice of side length L`; its location within the larger lattice can shift relative

to the second layer. This is used to facilitate logical Clifford operations. (b) represents parallel tiles of distance d`. Each

tile represents an outer qubit of the hierarchical code construction. Light gray dots will be used to facilitate Clifford

operations but are not used in the syndrome-extraction circuit for RS`.

The circuits CH

N are constructed such that each lattice position remains connected to a fixed and constant-

5

Decoding low-density parity check (LDPC) code
work in progress

Nature | Vol 627 | 28 March 2024 | 779

A quantum error correcting code is of LDPC type if each check opera-
tor of the code acts only on a few qubits and each qubit participates
in only a few checks. Several variants of the LDPC codes have been
proposed recently including hyperbolic surface codes30–32, hypergraph
product33, balanced product codes34, two-block codes based on finite
groups35–38 and quantum Tanner codes39,40. The latter were shown39,40
to be asymptotically ‘good’ in the sense of offering a constant encod-
ing rate and linear distance: a parameter quantifying the number of
correctable errors. By contrast, the surface code has an asymptoti-
cally zero encoding rate and only square-root distance. Replacing
the surface code with a high-rate, high-distance LDPC code could
have major practical implications. First, the fault-tolerance overhead
(the ratio between the number of physical and logical qubits) could
be reduced notably. Second, high-distance codes show a very sharp
decrease in the logical error rate: as the physical error probability
crosses the threshold value, the amount of error suppression achieved
by the code can increase by orders of magnitude even with a small
reduction of the physical error rate. This feature makes high-distance
LDPC codes attractive for near-term demonstrations that are likely
to operate in the near-threshold regime. However, it was previously
believed that outperforming the surface code for realistic noise mod-
els including memory, gate and state preparation and measurement
errors may require very large LDPC codes with more than 10,000
physical qubits31.

Here we present several concrete examples of high-rate LDPC codes
with a few hundred physical qubits equipped with a low-depth syn-
drome measurement circuit, an efficient decoding algorithm and a
fault-tolerant protocol for addressing individual logical qubits. These
codes show an error threshold close to 0.7%, show excellent perfor-
mance in the near-threshold regime and offer a 10 times reduction of
the encoding overhead compared with the surface code. Hardware
requirements for realizing our error correction protocols are rela-
tively mild, as each physical qubit is coupled by two-qubit gates with
only six other qubits. Although the qubit connectivity graph is not
locally embeddable into a 2D grid, it can be decomposed into two planar

degree-3 subgraphs. As we argue below, such qubit connectivity is well
suited for architectures based on superconducting qubits.

Our codes are a generalization of bicycle codes proposed by MacKay
et al.41 and studied in more depth in refs. 35,36,42. We named our
codes bivariate bicycle (BB) because they are based on bivariate poly-
nomials, as detailed in the Methods. These are stabilizer codes of the
Calderbank–Shor–Steane (CSS) type43,44 that can be described by a
collection of six-qubit check (stabilizer) operators composed of Pauli
X and Z. At a high level, a BB code is similar to the two-dimensional toric
code7. In particular, physical qubits of a BB code can be laid out on a
two-dimensional grid with periodic boundary conditions such that all
check operators are obtained from a single pair of X and Z checks by
applying horizontal and vertical shifts of the grid. However, in contrast
to the plaquette and vertex stabilizers describing the toric code, check
operators of BB codes are not geometrically local. Furthermore, each
check acts on six qubits rather than four qubits. We will describe the
code by a Tanner graph G such that each vertex of G represents either
a data qubit or a check operator. A check vertex i and a data vertex j are
connected by an edge if the ith check operator acts non-trivially on
the jth data qubit (by applying Pauli X or Z). See Fig. 1a,b for example
Tanner graphs of surface and BB codes, respectively. The Tanner graph
of any BB code has vertex degree six and graph thickness29 equal to
two, which means it can be decomposed into two edge-disjoint planar
subgraphs (Methods). Thickness-2 qubit connectivity is well suited
for superconducting qubits coupled by microwave resonators. For
example, two planar layers of couplers and their control lines can be
attached to the top and the bottom side of the chip hosting qubits,
and the two sides mated.

A BB code with parameters [[n, k, d]] encodes k logical qubits into n
data qubits offering a code distance d, meaning that any logical error
spans at least d data qubits. We divide n data qubits into registers q(L)
and q(R) of size n/2 each. Any check acts on three qubits from q(L) and
three qubits from q(R). The code relies on n ancillary check qubits
to measure the error syndrome. We divide n check qubits into regis-
ters q(X) and q(Z) of size n/2 that collect syndromes of X and Z types,

Surface
code

Quasi-cyclic code

Ancilla for X
_

Ancilla for Z
_

Data

ChecksZ

Z

Z

Z

ZL

R

X

X

X

X

X

‘A’ edge ‘B’ edgeXdata= check= = =data ZL R

a b

c

check

Fig. 1 | Tanner graphs of surface and BB codes. a, Tanner graph of a surface
code, for comparison. b, Tanner graph of a BB code with parameters [[144, 12, 12]]
embedded into a torus. Any edge of the Tanner graph connects a data and a
check vertex. Data qubits associated with the registers q(L) and q(R) are shown
by blue and orange circles. Each vertex has six incident edges including four
short-range edges (pointing north, south, east and west) and two long-range
edges. We only show a few long-range edges to avoid clutter. Dashed and solid

edges indicate two planar subgraphs spanning the Tanner graph, see the
Methods. c, Sketch of a Tanner graph extension for measuring Z and X
following ref. 50, attaching to a surface code. The ancilla corresponding to the
X measurement can be connected to a surface code, enabling load-store
operations for all logical qubits by means of quantum teleportation and some
logical unitaries. This extended Tanner graph also has an implementation in a
thickness-2 architecture through the A and B edges (Methods).

778 | Nature | Vol 627 | 28 March 2024

Article

High-threshold and low-overhead
fault-tolerant quantum memory

Sergey Bravyi1, Andrew W. Cross1, Jay M. Gambetta1, Dmitri Maslov1 ✉, Patrick Rall2 &
Theodore J. Yoder1

The accumulation of physical errors1–3 prevents the execution of large-scale
algorithms in current quantum computers. Quantum error correction4 promises
a solution by encoding k logical qubits onto a larger number n of physical qubits,
such that the physical errors are suppressed enough to allow running a desired
computation with tolerable !delity. Quantum error correction becomes practically
realizable once the physical error rate is below a threshold value that depends on the
choice of quantum code, syndrome measurement circuit and decoding algorithm5.
We present an end-to-end quantum error correction protocol that implements
fault-tolerant memory on the basis of a family of low-density parity-check codes6.
Our approach achieves an error threshold of 0.7% for the standard circuit-based noise
model, on par with the surface code7–10 that for 20 years was the leading code in terms
of error threshold. The syndrome measurement cycle for a length-n code in our family
requires n ancillary qubits and a depth-8 circuit with CNOT gates, qubit initializations
and measurements. The required qubit connectivity is a degree-6 graph composed
of two edge-disjoint planar subgraphs. In particular, we show that 12 logical qubits
can be preserved for nearly 1 million syndrome cycles using 288 physical qubits in
total, assuming the physical error rate of 0.1%, whereas the surface code would
require nearly 3,000 physical qubits to achieve said performance. Our !ndings bring
demonstrations of a low-overhead fault-tolerant quantum memory within the reach
of near-term quantum processors.

Quantum computing attracted attention due to its ability to offer
asymptotically faster solutions to a set of computational problems
compared to the best known classical algorithms5. It is believed that
a functioning scalable quantum computer may help solve computa-
tional problems in such areas as scientific discovery, materials research,
chemistry and drug design, to name a few11–14.

The main obstacle to building a quantum computer is the fragility of
quantum information, owing to various sources of noise affecting it. As
isolating a quantum computer from external effects and controlling it
to induce a desired computation are in conflict with each other, noise
appears to be inevitable. The sources of noise include imperfections
in qubits, materials used, controlling apparatus, state preparation and
measurement errors and a variety of external factors ranging from local
man-made, such as stray electromagnetic fields, to those inherent to the
Universe, such as cosmic rays. See ref. 15 for a summary. Whereas some
sources of noise can be eliminated with better control16, materials17 and
shielding18–20, several other sources appear to be difficult if at all pos-
sible to remove. The last kind can include spontaneous and stimulated
emission in trapped ions1,2, and the interaction with the bath (Purcell
effect)3 in superconducting circuits—covering both leading quantum
technologies. Thus, error correction becomes a key requirement for
building a functioning scalable quantum computer.

The possibility of quantum fault tolerance is well-established4.
Encoding a logical qubit redundantly into many physical qubits

enables one to diagnose and correct errors by repeatedly measuring
syndromes of parity-check operators. However, error correction is
only beneficial if the hardware error rate is below a certain threshold
value that depends on a particular error correction protocol. The
first proposals for quantum error correction, such as concatenated
codes21–23, focused on demonstrating the theoretical possibility of
error suppression. As understanding of quantum error correction and
the capabilities of quantum technologies matured, the focus shifted to
finding practical quantum error correction protocols. This resulted in
the development of the surface code7–10 that offers a high error thresh-
old close to 1%, fast decoding algorithms and compatibility with the
existing quantum processors relying on two-dimensional (2D) square
lattice qubit connectivity. Small examples of the surface code with a
single logical qubit have already been demonstrated experimentally
by several groups24–28. However, scaling up the surface code to 100 or
more logical qubits would be prohibitively expensive due to its poor
encoding efficiency. This spurred interest in more general quantum
codes known as low-density parity-check (LDPC) codes6. Recent pro-
gress in the study of LDPC codes suggests that they can achieve quan-
tum fault tolerance with a much higher encoding efficiency29. Here,
we focus on the study of LDPC codes, as our goal is to find quantum
error correction codes and protocols that are both efficient and pos-
sible to demonstrate in practice, given the limitations of quantum
computing technologies.

https://doi.org/10.1038/s41586-024-07107-7

Received: 25 August 2023

Accepted: 23 January 2024

Published online: 27 March 2024

Open access

 Check for updates

1IBM Quantum, IBM T.J. Watson Research Center, Yorktown Heights, NY, USA. 2IBM Quantum, MIT-IBM Watson AI Laboratory, Cambridge, MA, USA. ✉e-mail: dmitri.maslov@ibm.com

778 | Nature | Vol 627 | 28 March 2024

Article

High-threshold and low-overhead
fault-tolerant quantum memory

Sergey Bravyi1, Andrew W. Cross1, Jay M. Gambetta1, Dmitri Maslov1 ✉, Patrick Rall2 &
Theodore J. Yoder1

The accumulation of physical errors1–3 prevents the execution of large-scale
algorithms in current quantum computers. Quantum error correction4 promises
a solution by encoding k logical qubits onto a larger number n of physical qubits,
such that the physical errors are suppressed enough to allow running a desired
computation with tolerable !delity. Quantum error correction becomes practically
realizable once the physical error rate is below a threshold value that depends on the
choice of quantum code, syndrome measurement circuit and decoding algorithm5.
We present an end-to-end quantum error correction protocol that implements
fault-tolerant memory on the basis of a family of low-density parity-check codes6.
Our approach achieves an error threshold of 0.7% for the standard circuit-based noise
model, on par with the surface code7–10 that for 20 years was the leading code in terms
of error threshold. The syndrome measurement cycle for a length-n code in our family
requires n ancillary qubits and a depth-8 circuit with CNOT gates, qubit initializations
and measurements. The required qubit connectivity is a degree-6 graph composed
of two edge-disjoint planar subgraphs. In particular, we show that 12 logical qubits
can be preserved for nearly 1 million syndrome cycles using 288 physical qubits in
total, assuming the physical error rate of 0.1%, whereas the surface code would
require nearly 3,000 physical qubits to achieve said performance. Our !ndings bring
demonstrations of a low-overhead fault-tolerant quantum memory within the reach
of near-term quantum processors.

Quantum computing attracted attention due to its ability to offer
asymptotically faster solutions to a set of computational problems
compared to the best known classical algorithms5. It is believed that
a functioning scalable quantum computer may help solve computa-
tional problems in such areas as scientific discovery, materials research,
chemistry and drug design, to name a few11–14.

The main obstacle to building a quantum computer is the fragility of
quantum information, owing to various sources of noise affecting it. As
isolating a quantum computer from external effects and controlling it
to induce a desired computation are in conflict with each other, noise
appears to be inevitable. The sources of noise include imperfections
in qubits, materials used, controlling apparatus, state preparation and
measurement errors and a variety of external factors ranging from local
man-made, such as stray electromagnetic fields, to those inherent to the
Universe, such as cosmic rays. See ref. 15 for a summary. Whereas some
sources of noise can be eliminated with better control16, materials17 and
shielding18–20, several other sources appear to be difficult if at all pos-
sible to remove. The last kind can include spontaneous and stimulated
emission in trapped ions1,2, and the interaction with the bath (Purcell
effect)3 in superconducting circuits—covering both leading quantum
technologies. Thus, error correction becomes a key requirement for
building a functioning scalable quantum computer.

The possibility of quantum fault tolerance is well-established4.
Encoding a logical qubit redundantly into many physical qubits

enables one to diagnose and correct errors by repeatedly measuring
syndromes of parity-check operators. However, error correction is
only beneficial if the hardware error rate is below a certain threshold
value that depends on a particular error correction protocol. The
first proposals for quantum error correction, such as concatenated
codes21–23, focused on demonstrating the theoretical possibility of
error suppression. As understanding of quantum error correction and
the capabilities of quantum technologies matured, the focus shifted to
finding practical quantum error correction protocols. This resulted in
the development of the surface code7–10 that offers a high error thresh-
old close to 1%, fast decoding algorithms and compatibility with the
existing quantum processors relying on two-dimensional (2D) square
lattice qubit connectivity. Small examples of the surface code with a
single logical qubit have already been demonstrated experimentally
by several groups24–28. However, scaling up the surface code to 100 or
more logical qubits would be prohibitively expensive due to its poor
encoding efficiency. This spurred interest in more general quantum
codes known as low-density parity-check (LDPC) codes6. Recent pro-
gress in the study of LDPC codes suggests that they can achieve quan-
tum fault tolerance with a much higher encoding efficiency29. Here,
we focus on the study of LDPC codes, as our goal is to find quantum
error correction codes and protocols that are both efficient and pos-
sible to demonstrate in practice, given the limitations of quantum
computing technologies.

https://doi.org/10.1038/s41586-024-07107-7

Received: 25 August 2023

Accepted: 23 January 2024

Published online: 27 March 2024

Open access

 Check for updates

1IBM Quantum, IBM T.J. Watson Research Center, Yorktown Heights, NY, USA. 2IBM Quantum, MIT-IBM Watson AI Laboratory, Cambridge, MA, USA. ✉e-mail: dmitri.maslov@ibm.com

780 | Nature | Vol 627 | 28 March 2024

Article

respectively. In total, the encoding relies on 2n physical qubits. The net
encoding rate is therefore r = k/(2n). For example, the standard surface
code architecture encodes k = 1 logical qubit into n = d2 data qubits for
a distance-d code and uses n − 1 check qubits for syndrome measure-
ments. The net encoding rate is r ≈ 1/(2d2), which quickly becomes
impractical as one is forced to choose a large code distance, due to,
for instance, the physical errors being close to the threshold value.
By contrast, BB codes have encoding rate r ≫ 1/d2, see Table 1 for code
examples. To the best of our knowledge, all codes shown in Table 1 are
new. The distance-12 code [[144, 12, 12]] may be the most promising for
near-term demonstrations, as it combines large distance and high net
encoding rate r = 1/24. For comparison, the distance-11 surface code has
a net encoding rate r = 1/241. Below, we show that the distance-12 BB
code outperforms the distance-11 surface code for the experimentally
relevant range of error rates.

To prevent the accumulation of errors one must be able to measure
the error syndrome frequently enough. This is accomplished by a syn-
drome measurement circuit that couples data qubits in the support of
each check operator with the respective ancillary qubit by a sequence
of CNOT gates. Check qubits are then measured revealing the value

of the error syndrome. The time it takes to implement the syndrome
measurement circuit is proportional to its depth: the number of gate
layers composed of non-overlapping CNOTs. As new errors continue to
occur while the syndrome measurement circuit is executed, its depth
should be minimized. The full cycle of syndrome measurement for a
BB code is illustrated on Fig. 2. The syndrome cycle requires only seven
layers of CNOTs regardless of the code length. The check qubits are ini-
tialized and measured at the beginning and at the end of the syndrome
cycle respectively (see the Methods for details). The circuit respects
the cyclic shift symmetry of the underlying code.

The full error correction protocol performs Nc ≫ 1 syndrome meas-
urement cycles and then calls a decoder: a classical algorithm that
takes as input the measured syndromes and outputs a guess of the final
error on the data qubits. Error correction succeeds if the guessed and
the actual error coincide modulo a product of check operators. In this
case, the two errors have the same action on any encoded (logical) state.
Thus, applying the inverse of the guessed error returns data qubits to
the initial logical sate. Otherwise, if the guessed and the actual error
differ by a non-trivial logical operator, error correction fails resulting
in a logical error. Our numerical experiments are based on the belief
propagation with an ordered statistics decoder (BP-OSD) proposed by
Panteleev and Kalachev36. The original work36 described BP-OSD in the
context of a toy noise model with memory errors only. Here we show
how to extend BP-OSD to the circuit-based noise model, see the Sup-
plementary Information for details. Our approach closely follows
refs. 45–48.

A noisy version of the syndrome measurement circuit may include
several types of faulty operations such as memory errors on idle data
or check qubits, faulty CNOT gates, qubit initializations and measure-
ments. We consider the circuit-based noise model10 in which each
operation fails independently with probability p. The probability of a
logical error pL depends on the error rate p, details of the syndrome
measurement circuits, and the decoding algorithm. Let PL(Nc) be the
logical error probability after performing Nc syndrome cycles. Define
the logical error rate as p P N P N N= 1 − (1 − ()) ≈ ()/N

L L c
1/

L c c
c . Informally, pL

can be viewed as the logical error probability per syndrome cycle.
Following common practice, we choose Nc = d for a distance-d code.
Figure 3 shows the logical error rate achieved by codes from Table 1.
The logical error rate was computed numerically for p ≥ 10−3 and
extrapolated to lower error rates using a fitting formula (Methods).

Table 1 | Performance of BB codes

[[n, k, d]] Net
encoding
rate, r

Circuit-level
distance,
dcirc

Pseudo-
threshold,
p0

pL (10−3) pL (10−4)

[[72, 12, 6]] 1/12 ≤6 0.0048 7 × 10−5 7 × 10−8

[[90, 8, 10]] 1/23 ≤8 0.0053 5 × 10−6  4 × 10−10

[[108, 8, 10]] 1/27 ≤8 0.0058 3 × 10−6  1 × 10−10

[[144, 12, 12]] 1/24 ≤10 0.0065 2 × 10−7 8 × 10−13

[[288, 12, 18]] 1/48 ≤18 0.0069 2 × 10−12 1 × 10−22

Small examples of BB LDPC codes and their performance for the circuit-based noise model.
All codes have weight-6 checks, depth-7 syndrome measurement circuit, and the Tanner
graph composed of two planar subgraphs. A code with parameters [[n, k, d]] requires 2n
physical qubits in total and achieves the net encoding rate r = k/2n (we round r down to
the nearest inverse integer). Circuit-level distance dcirc is the minimum number of faulty
operations in the syndrome measurement circuit required to generate a logical error without
triggering any syndromes.

|+〉

X

Z

Round 1

|+〉
|+〉
|+〉
|+〉
|+〉

X

Z

L

R

N
ex

t c
yc

le
2 3 4 5 6 7 8

|0〉
|0〉
|0〉
|0〉
|0〉
|0〉

Fig. 2 | Syndrome measurement circuit. Full cycle of syndrome measurements
relying on seven layers of CNOTs. We provide a local view of the circuit that only
includes one data qubit from each register q(L) and q(R). The circuit is symmetric

under horizontal and vertical shifts of the Tanner graph. Each data qubit is
coupled by CNOTs with three X-check and three Z-check qubits: see the Methods
for more details.

• Encodes 12 logical qubits in 144
physical qubits

• Non-local stabilizers in 2D
• Non-matchable (hyperedges)

GNN decoder for LDPC codes
preliminary results

0 500 1000 1500
Training epoch

10°4

10°3

10°2

10°1

L
og

ic
al

fa
il
u
re

ra
te

1000 1500
0.16

0.17

0.18

Training

Validation

Test p = 10°3

BP-OSD

GNN

• Multiple logical qubits => multiple output layer nodes
• All graph nodes (stabilizers) are proximate due to long-range connectivity

780 | Nature | Vol 627 | 28 March 2024

Article

respectively. In total, the encoding relies on 2n physical qubits. The net
encoding rate is therefore r = k/(2n). For example, the standard surface
code architecture encodes k = 1 logical qubit into n = d2 data qubits for
a distance-d code and uses n − 1 check qubits for syndrome measure-
ments. The net encoding rate is r ≈ 1/(2d2), which quickly becomes
impractical as one is forced to choose a large code distance, due to,
for instance, the physical errors being close to the threshold value.
By contrast, BB codes have encoding rate r ≫ 1/d2, see Table 1 for code
examples. To the best of our knowledge, all codes shown in Table 1 are
new. The distance-12 code [[144, 12, 12]] may be the most promising for
near-term demonstrations, as it combines large distance and high net
encoding rate r = 1/24. For comparison, the distance-11 surface code has
a net encoding rate r = 1/241. Below, we show that the distance-12 BB
code outperforms the distance-11 surface code for the experimentally
relevant range of error rates.

To prevent the accumulation of errors one must be able to measure
the error syndrome frequently enough. This is accomplished by a syn-
drome measurement circuit that couples data qubits in the support of
each check operator with the respective ancillary qubit by a sequence
of CNOT gates. Check qubits are then measured revealing the value

of the error syndrome. The time it takes to implement the syndrome
measurement circuit is proportional to its depth: the number of gate
layers composed of non-overlapping CNOTs. As new errors continue to
occur while the syndrome measurement circuit is executed, its depth
should be minimized. The full cycle of syndrome measurement for a
BB code is illustrated on Fig. 2. The syndrome cycle requires only seven
layers of CNOTs regardless of the code length. The check qubits are ini-
tialized and measured at the beginning and at the end of the syndrome
cycle respectively (see the Methods for details). The circuit respects
the cyclic shift symmetry of the underlying code.

The full error correction protocol performs Nc ≫ 1 syndrome meas-
urement cycles and then calls a decoder: a classical algorithm that
takes as input the measured syndromes and outputs a guess of the final
error on the data qubits. Error correction succeeds if the guessed and
the actual error coincide modulo a product of check operators. In this
case, the two errors have the same action on any encoded (logical) state.
Thus, applying the inverse of the guessed error returns data qubits to
the initial logical sate. Otherwise, if the guessed and the actual error
differ by a non-trivial logical operator, error correction fails resulting
in a logical error. Our numerical experiments are based on the belief
propagation with an ordered statistics decoder (BP-OSD) proposed by
Panteleev and Kalachev36. The original work36 described BP-OSD in the
context of a toy noise model with memory errors only. Here we show
how to extend BP-OSD to the circuit-based noise model, see the Sup-
plementary Information for details. Our approach closely follows
refs. 45–48.

A noisy version of the syndrome measurement circuit may include
several types of faulty operations such as memory errors on idle data
or check qubits, faulty CNOT gates, qubit initializations and measure-
ments. We consider the circuit-based noise model10 in which each
operation fails independently with probability p. The probability of a
logical error pL depends on the error rate p, details of the syndrome
measurement circuits, and the decoding algorithm. Let PL(Nc) be the
logical error probability after performing Nc syndrome cycles. Define
the logical error rate as p P N P N N= 1 − (1 − ()) ≈ ()/N

L L c
1/

L c c
c . Informally, pL

can be viewed as the logical error probability per syndrome cycle.
Following common practice, we choose Nc = d for a distance-d code.
Figure 3 shows the logical error rate achieved by codes from Table 1.
The logical error rate was computed numerically for p ≥ 10−3 and
extrapolated to lower error rates using a fitting formula (Methods).

Table 1 | Performance of BB codes

[[n, k, d]] Net
encoding
rate, r

Circuit-level
distance,
dcirc

Pseudo-
threshold,
p0

pL (10−3) pL (10−4)

[[72, 12, 6]] 1/12 ≤6 0.0048 7 × 10−5 7 × 10−8

[[90, 8, 10]] 1/23 ≤8 0.0053 5 × 10−6  4 × 10−10

[[108, 8, 10]] 1/27 ≤8 0.0058 3 × 10−6  1 × 10−10

[[144, 12, 12]] 1/24 ≤10 0.0065 2 × 10−7 8 × 10−13

[[288, 12, 18]] 1/48 ≤18 0.0069 2 × 10−12 1 × 10−22

Small examples of BB LDPC codes and their performance for the circuit-based noise model.
All codes have weight-6 checks, depth-7 syndrome measurement circuit, and the Tanner
graph composed of two planar subgraphs. A code with parameters [[n, k, d]] requires 2n
physical qubits in total and achieves the net encoding rate r = k/2n (we round r down to
the nearest inverse integer). Circuit-level distance dcirc is the minimum number of faulty
operations in the syndrome measurement circuit required to generate a logical error without
triggering any syndromes.

|+〉

X

Z

Round 1

|+〉
|+〉
|+〉
|+〉
|+〉

X

Z

L

R

N
ex

t c
yc

le

2 3 4 5 6 7 8

|0〉
|0〉
|0〉
|0〉
|0〉
|0〉

Fig. 2 | Syndrome measurement circuit. Full cycle of syndrome measurements
relying on seven layers of CNOTs. We provide a local view of the circuit that only
includes one data qubit from each register q(L) and q(R). The circuit is symmetric

under horizontal and vertical shifts of the Tanner graph. Each data qubit is
coupled by CNOTs with three X-check and three Z-check qubits: see the Methods
for more details.

Smallest “IBM” code

Still a little way to go!

Inference time per syndrome

102 103 104

d2 · dt

10°6

10°5

10°4

10°3

T
im

e
p
er

sa
m

p
le

in
se

co
n
d
s

MWPM: Æ = 1.08 ± 0.02

GNN: Æ = 0.99 ± 0.01

Linear Regression

• Decoding time scales linearly with code “volume”
• NB Both MWPM (Pymatching) and GNN are batched/parallelized

• Fixed size network
• Hardware and

implementation dependent

GNN on real experimental data
Repetition code, 25 stabilizer cycles
Datsets of around 107

5

maximum-likelihood decoder. Because the ZXXZ vari-
ant of the surface code symmetrises the X and Z bases,
differences between the two bases’ logical error per round
are small and attributable to spatial variations in phys-
ical error rates. Thus, for visual clarity, we report log-
ical error probabilities averaged between the X and Z
basis; the full data set may be found in the supplement.
Note that we do not post-select on leakage or high-energy
events in order to capture the effects of realistic non-
idealities on logical performance. Over all 25 cycles of
error correction, the distance-5 code realises lower logi-
cal error probabilities pL than the average of the subset
distance-3 codes.

We fit the logical fidelity F = 1 � 2pL to an expo-
nential decay, starting at t = 3 to avoid time-boundary
effects that are advantageous to the distance-5 code. We
obtain a logical error per cycle "5 = (2.914±0.016)% (1�
statistical and fit uncertainty) for the distance-5 code,
compared to an average of "3 = (3.028 ± 0.023)% for
the subset distance-3 codes, a relative error reduction
of about 4%. When decoding with the faster belief-
matching decoder, we fit a logical error per cycle of
(3.056 ± 0.015)% for the distance-5 code, compared to
an average of (3.118 ± 0.025)% for the distance-3 codes,
a relative error reduction of about 2%. We note that the
distance-5 logical error per cycle is slightly higher than
two of the distance-3 codes individually, and that leak-
age accumulation may cause distance-5 performance to
degrade faster than distance-3 as logical error probabil-
ity approaches 50%.

In principle, the logical performance of a distance-5
code should improve faster than a distance-3 code as
physical error rates decrease [36]. Over time, we im-
proved our physical error rates, for example by optimis-
ing single and two qubit gates, measurement, and data
qubit idling [43]. In Fig. 3c, we show the correspond-
ing performance progression of distance-5 and distance-3
codes. The larger code improved about twice as fast until
finally overtaking the smaller code, validating the benefit
of increased-distance protection in practice.

To understand the contributions of individual compo-
nents to our logical error performance, we follow Ref. [42]
and simulate the distance-5 and distance-3 codes while
varying the physical error rates of the various circuit
components. Because the logical error-suppression fac-
tor ⇤d/(d+2) = "d/"d+2 is approximately inversely pro-
portional to the physical error rate, we can budget how
much each physical error mechanism contributes to 1/⇤
as shown in Fig. 4a to assess scaling. This error budget
shows that CZ error and data qubit decoherence during
measurement and reset are dominant contributors.

VI. ALGORITHMICALLY-RELEVANT ERROR
RATES WITH REPETITION CODES

Even as known error sources are suppressed in future
devices, new dominant error mechanisms may arise as

d = 25Surface code

Repetition code

Removed
high-energy event

A
bo

ve
cr

os
so

ve
r

B
el

ow
th

re
sh

ol
d

C
ro

ss
ov

er
re

gi
m

e

εd = 0.050
εd = 0.036εd = 0.030

εd = 0.014

εd = 0.010

ε3 = ε5

ε23 = ε25

ε7 = ε9

s = 0.9

s = 1.0

s = 1.1

s = 1.2
s = 1.3

εd = 0.020

εd > εd+2

εd < εd+2

Pauli sim. Pauli sim.

CZ

DD

Measure

Leakage

CZ
stray
int

1Q

S
ur

fa
ce

 c
od

e
er

ro
r b

ud
ge

t,
1/
Λ 3

/5

Lo
gi

ca
l e

rr
or

 p
er

 c
yc

le
, ε

d

Logical error per cycle, εd

Lo
gi

ca
l e

rr
or

 p
er

 c
yc

le
, ε

d

FIG. 4. Towards algorithmically-relevant error rates.
a, Estimated error budgets for the surface code, based on op-
eration errors (see Fig. 1c) and Pauli+ simulations. ⇤3/5 =
"3/"5. CZ: contributions from CZ error (excluding leakage
and stray interactions). CZ stray int: CZ error from un-
wanted interactions. DD: dynamical decoupling, data qubit
idle error during measurement and reset. Measure: measure-
ment and reset error. Leakage: leakage during CZs and due
to heating. 1Q: single-qubit gate error. b, Logical error for
repetition codes. Inset: schematic of the distance-25 repe-
tition code, using the same data and measure qubits as the
distance-5 surface code. Smaller codes are subsampled from
the same distance-25 data [42]. A high-energy event resulted
in an apparent error floor around 10�6. After removing the in-
stances nearby (light blue), error decreases more rapidly with
code distance. 50 cycles, 5⇥105 repetitions. We also plot the
surface code error per cycle from Fig. 3b in black. c, Contour
plot of simulated surface code logical error per round "d as a
function of code distance d and a scale factor s on the error
model in Fig. 1c (Pauli simulation, s = 1.0 corresponds to
the current device error model). d, Horizontal slices from c,
each for a value of error model scale factor s. s = 1.3 is above
threshold (larger codes are worse), while s = 1.2 to 1.0 repre-
sent the crossover regime, where progressively larger codes get
better until a turnaround. s = 0.9 is below threshold (larger
codes are better).

lower logical error rates are realised. To test the be-
haviour of codes with substantially lower error rates, we
employ the bit-flip repetition code, a 1D version of the
surface code. The bit-flip repetition code does not correct
for phase flip errors and is thus unsuitable for quantum
algorithms. However, correcting only bit-flip errors al-
lows it to achieve much lower logical error probabilities.

GNN decoder on par with “informed” matching
decoder for d=3 and 5.

Surface code dataset is too small, and/or error rates too high.

8

3 5 7 9
Code distance

10�3

10�2

L
og

ic
al

er
ro

r
p
er

cy
cl

e
✏

Uninformed MWPM

Graph Neural Network

Device-informed MWPM

Figure 5. Decoding experimental data [28] on the repetition
code with code distance d, over 50 rounds of stabilizer mea-
surements. Comparing GNN decoder, using a dataset con-
taining (26� d) · 5 · 107 graphs, with a MWPM decoder with
“device-optimized” edge weights ([28]) and a simple model-free
MWPM decoder with 1-norm edge weights. The training-test
split of the dataset is 99 to 1, and the logical failure rate is
mapped to an error rate per round. Results for two different
random training-test splits are shown.

20 40 60 80 100
Training epoch

0.65

0.70

0.75

0.80

0.85

0.90

0.95

L
og

ic
al

ac
cu

ra
cy

Training

Test

d = 3

d = 5

d = 7

d = 9

Figure 6. Training curves for the GNN decoder on repetition
code, following Figure 5. Each epoch trains through the whole
training set, which eventually leads to overfitting, where the
training accuracy starts to significantly surpass the test accu-
racy. To maximize the amount of training data, no validation
set was used. No early stopping was implemented in order to
avoid optimizing results to the test set.

we expect that the decoder would eventually converge to
a maximum likelihood decoder, but in practice the accu-
racy is limited by the training time. It gets progressively
more difficult to converge the training for larger code dis-
tances, which means that any threshold estimate will be
a function of the training time versus code distance. In
fact, in principle, since the threshold is a d ! 1 quantity,

0.05 0.10 0.15 0.20
Error rate

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

L
og

ic
al

fa
il
u
re

ra
te

10�3 10�2

10�10

10�6

10�2

d = 3

d = 5

d = 7

d = 13

d = 21

GNN

MWPM

MPS

Figure 7. Decoding the rotated surface code with perfect sta-
bilizers and code distance d. Logical failure rate versus error
rate p, for depolarizing noise, evaluated over failures with re-
spect to both XL(�X) and ZL(�Z). Comparing the GNN
decoder with MWPM decoder that has full information of
the data-generating error model. Each data point is evalu-
ated over 105 data points (108 for ??). Dashed lines is the
accuracy using a matrix product state (MPS) decoder [100]
at code distances 3 to 7. Inset shows low-p failure rates for
d  7, where open markers are based on sampling only the
lowest weight errors that fail.

we would not expect that a supervised learning algorithm
can give a proper threshold if trained separately for each
code distance. Nevertheless, through GNN’s it is quite
natural to use the same network to decode any distance
code, as the data objects (detector graphs) have the same
structure. We have investigated training the same net-
work for different code distances and different number of
rounds. This shows some promise, but so far does not
achieve accuracy levels that can match MWPM.

IV.4. Scalability

We are limited to relatively small codes in this work.
For the repetition code using experimental data, it is
quite clear that main limitation to scaling up the code
distance is the size of the available dataset. For the sur-
face code using simulated data it is challenging to in-
crease the code distance while still surpassing MWPM.
As the logical failure rates decrease exponentially with
code distance, the test accuracy of the supervised train-
ing needs to follow. One way to counter this is to increase
the number of stabilizer cycles, dt, but this also increases
the graph size, making the training more challenging
from the perspective of increased memory requirements
as well as the increased complexity of the data.

Nevertheless, it is interesting to explore the intrinsic
scalability of the algorithm, by quantifying how the de-
coding time using a fixed size GNN scales with the code

Other recent related work
Neural network decoder for near-term surface-code experiments

Boris M. Varbanov,1, ⇤ Marc Serra-Peralta,1, 2 David Byfield,3 and Barbara M. Terhal1, 2

1
QuTech, Delft University of Technology, P.O. Box 5046, 2600 GA Delft, The Netherlands

2
Delft Institute of Applied Mathematics, Technische Universiteit Delft, 2628 CD Delft, The Netherlands

3
Riverlane, Cambridge, CB2 3BZ, United Kingdom

(Dated: October 24, 2023)

Neural-network decoders can achieve a lower logical error rate compared to conventional de-
coders, like minimum-weight perfect matching, when decoding the surface code. Furthermore, these
decoders require no prior information about the physical error rates, making them highly adaptable.
In this study, we investigate the performance of such a decoder using both simulated and exper-
imental data obtained from a transmon-qubit processor, focusing on small-distance surface codes.
We first show that the neural network typically outperforms the matching decoder due to better
handling errors leading to multiple correlated syndrome defects, such as Y errors. When applied to
the experimental data of [Google Quantum AI, Nature 614, 676 (2023)], the neural network decoder
achieves logical error rates approximately 25% lower than minimum-weight perfect matching, ap-
proaching the performance of a maximum-likelihood decoder. To demonstrate the flexibility of this
decoder, we incorporate the soft information available in the analog readout of transmon qubits and
evaluate the performance of this decoder in simulation using a symmetric Gaussian-noise model.
Considering the soft information leads to an approximately 10% lower logical error rate, depending
on the probability of a measurement error. The good logical performance, flexibility, and computa-
tional e�ciency make neural network decoders well-suited for near-term demonstrations of quantum
memories.

I. INTRODUCTION

Quantum computers are anticipated to outperform
classical computers in solving specific problems, such
as integer factorization [1] and quantum simulation [2].
However, for a quantum computer to perform any mean-
ingful computation, it has to be able to execute millions
of operations, requiring error rates per operation lower
than 10�10 [3, 4]. Despite a valiant experimental e↵ort
aimed at enhancing operational performance, state-of-
the-art processors typically exhibit error rates per opera-
tion around 10�3 [5–14], which is far from what is needed
to perform any useful computation.
Fortunately, quantum error correction (QEC) provides

a means to reduce the error rates, albeit at the cost of ad-
ditional overhead in the required physical qubits [15–18].
Two-dimensional stabilizer codes [19], such as the surface
codes [20], have emerged as a prominent approach to real-
izing fault-tolerant computation due to their modest con-
nectivity requirements and high tolerance to errors [21–
23]. These codes encode the logical information into an
array of physical qubits, referred to as data qubits. An-
cilla qubits are used to repeatedly measure parities of sets
of neighboring data qubits. Changes between consecutive
measurement outcomes, which are typically referred to as
syndrome defects, indicate that errors have occurred. A
classical decoder processes this information and aims at
inferring the most likely correction.
The increased number of available qubits [24–27] and

the higher fidelities of physical operations [5–14, 28–33] in

⇤ Corresponding author: b.m.varbanov@tudelft.nl

modern processors have enabled several experiments em-
ploying small-distance codes to demonstrate the capacity
to detect and correct errors [26, 27, 34–46]. In a recent
milestone experiment, the error rate per QEC round of
a surface-code logical qubit was reduced by increasing
the code distance [26], demonstrating the fundamental
suppression achieved by QEC.

The performance of the decoder directly influences the
performance of a QEC code. Minimum-weight perfect
matching (MWPM) is a good decoding algorithm for
the surface code, which is computationally e�cient and,
therefore, scalable [21, 47–50]. Its good performance is
ensured under the assumption that the errors occurring
in the experiment can be modeled as independent X and
Z errors [21]. This leads to the MWPM decoder per-
forming worse than decoders based on belief propaga-
tion [51–54] or a (more computationally-expensive) ap-
proximate maximum-likelihood decoder based on tensor-
network (TN) contraction [55, 56]. A more practical con-
cern is that a decoder relies on a physical error model
to accurately infer the most likely correction. Typi-
cally, this requires constructing an approximate model
and a series of benchmarking experiments to extract
the physical error rates. While there are methods to
estimate the physical error rates based on the mea-
sured defects [26, 39, 57, 58], they typically ignore non-
conventional errors like crosstalk or leakage. The pres-
ence of these errors can impact both the accuracy with
which the physical error rates are estimated from the
data and the performance of the decoder itself [58].

An alternative approach to decoding is based on us-
ing neural networks (NN) to infer the most likely cor-
rection given a set of measured defects [59–79]. These
decoders do not require any prior information about the

ar
X

iv
:2

30
7.

03
28

0v
2

 [q
ua

nt
-p

h]
 2

3
O

ct
 2

02
3

4

FIG. 2. Schematic of the recurrent NN architecture used in
this work, following the design proposed in [64]. The inputs to
the network are the set of defects {da,r}, which are calculated
from the measurement outcomes of each ancilla qubit a at
QEC round r = 1, 2, . . . , N � 1, and the final defects {da,N},
which are inferred from data qubit measurements. The time-
invariant input {da,r} is provided to the recurrent part of the
network, consisting of two stacked LSTM layers (yellow rect-
angles) and a ReLU activation layer (orange rectangle). The
recurrent output is then passed to the two heads of the de-
coder, which consist of an evaluation layer (blue rectangle)
that predict a probability of a logical error. The lower head
takes as input only the recurrent output and outputs a prob-
ability paux. The upper head, on the other hand, combines
(teal rectangle) the recurrent output with {da,N} and outputs
a probability pmain. Arrows indicate the flow of information
through the network.

of each experiment, it is possible to extract the actual
value ptrue 2 {0, 1} of whether a correction is required or
not. In particular, the cost function I that the network
attempts to minimize during training is the weighted sum
of the binary cross-entropies between each prediction and
ptrue, expressed as

I = H(pmain, ptrue) + waH(paux, ptrue),

where wa is a weight that is typically chosen as wa = 0.5
in our runs, while

H(pi, pj) = �pi log pj � (1� pi) log(1� pj)

is the binary cross-entropy function. The choice behind
this loss function is elaborated below.
Fig. 2 schematically illustrates the architecture of the

recurrent network. The recurrent body of the neural
network consists of two stacked long short-term mem-
ory (LSTM) layers. Each LSTM layer is defined by a
pair of internal memory states: a short-term memory,
referred to as the hidden state, and a long-term memory,
referred to as the cell state. Here, we use the same in-
ternal states size NL for both LSTM layers [89, 90], with
NL = 64, 96, 128 for surface codes of distance d = 3, 5, 7,
unless otherwise specified. The LSTM layers receive the
defects for each QEC round as input, calculated from
both the X-type and the Z-type stabilizer measurement
outcomes. The first LSTM layer outputs a hidden state
for each QEC round, which is then provided as input
to the second LSTM layer, which outputs only its final
hidden state. A rectified linear unit (ReLU) activation
function is applied to the output of the second LSTM
layer before being passed along to each of the two heads
of the network.
The heads of the network are feed-forward evaluation

networks consisting of a single hidden layer of size NL

using the ReLU activation function and an output layer
using the sigmoid activation function, which maps the
hidden layer output to a probability used for binary clas-
sification. The output of the recurrent part of the net-
work is directly passed to the lower head of the network,
which uses this information to predict a probability paux

of a logical error. The upper head also considers the de-
fects inferred from the data qubit measurements, which
are combined with the recurrent output and provided as
input. Therefore, unlike the lower head, the upper one
uses the full information about the errors that have oc-
curred when making its prediction pmain of whether a log-
ical error occurred. Both pmain and paux are used when
training the network, which helps the neural network to
generalize to handle longer input sequences. However,
only pmain is used when evaluating the performance of
the decoder. We provide additional details about the
training procedure in Section VIB and list the hyper-
parameters of the network in Table I.

III. RESULTS

A. Performance on circuit-level noise simulations

We first demonstrate that the NN decoder can achieve
a lower logical error rate than the MWPM decoder by
learning error correlations between the defects, which are
otherwise ignored by the MWPM decoder. We consider
the Y -biased circuit-level noise model described previ-
ously, parameterized by the bias ⌘ towards Y errors and
a probability p = 0.001 of inserting an error after each
operation. We use this noise model to simulate the per-
formance of a d = 3 surface-code quantum memory ex-
periment in the Z-basis, initially preparing either |0i⌦n

or |1i⌦n. To train the NN decoder, we generated datasets
of r = 1, 5, . . . , 37 QEC rounds, sampling 5 ⇥ 105 shots
for each round and initial state. When evaluating the de-
coder’s performance, we simulate the code performance
over r = 10, 30, . . . , 290 QEC rounds and sample 2⇥ 104

shots instead.
To benchmark the logical performance, we calculate

the logical fidelity FL at the end of each experiment. Av-
eraging FL over each initial state, we fit the exponential
decay of FL with the number of QEC rounds to extract
the logical error rate per round "L. Fig. 3 shows that
the NN decoder maintains a constant "L when evaluated
on datasets going up to 300 QEC rounds, demonstrating
the ability of the decoder to generalize to significantly
longer sequences than those used for training. On the
other hand, the NN decoder achieves about 20% lower
"L compared to the MWPM decoder. We then eval-
uate the trained NN decoder on simulated data using
⌘ 2 {0, 0.5, 1, 2, 10, 100} and keep all other parameters
the same without training any new neural networks, with
the resulting error rates shown in Fig. 3b. At ⌘ = 0, cor-
responding to an error model leading to X and Z errors,
the NN decoder displays a higher "L than the MWPM

Learning to Decode the Surface Code
with a Recurrent, Transformer-Based

Neural Network
Johannes Bausch1⇤†, Andrew W Senior1�†, Francisco J H Heras1†, Thomas Edlich1†,

Alex Davies1†, Michael Newman2†, Cody Jones2, Kevin Satzinger2, Murphy Yuezhen Niu2,
Sam Blackwell1, George Holland1, Dvir Kafri2, Juan Atalaya2, Craig Gidney2,

Demis Hassabis1, Sergio Boixo2, Hartmut Neven2, Pushmeet Kohli1

1Google DeepMind & 2Google Quantum AI

Quantum error-correction is a prerequisite for reliable quantum computation.
Towards this goal, we present a recurrent, transformer-based neural network which
learns to decode the surface code, the leading quantum error-correction code.
Our decoder outperforms state-of-the-art algorithmic decoders on real-world data
from Google’s Sycamore quantum processor for distance 3 and 5 surface codes.
On distances up to 11, the decoder maintains its advantage on simulated data
with realistic noise including cross-talk, leakage, and analog readout signals,
and sustains its accuracy far beyond the 25 cycles it was trained on. Our work
illustrates the ability of machine learning to go beyond human-designed algorithms
by learning from data directly, highlighting machine learning as a strong contender
for decoding in quantum computers.

�Corresponding authors: andrewsenior@google.com, jbausch@google.com
†Equal contribution

1

ar
X

iv
:2

31
0.

05
90

0v
1

 [q
ua

nt
-p

h]
 9

 O
ct

 2
02

3

Work in progress: “Neural belief-matching”
• A pure neural network decoder is very data-hungry
• Can we combine a smaller graph network with a matching decoder?
 Still data-driven/model-free

ReLU ReLU ReLU 0.3
3.5

9.7

...

...
...

0.2

1.7

3.8
12.0

11.9

8.1......
......
.........

......

Graph convolutions

Edge extraction
Linear network

Graph neural network

0.2
1.7

3.8

12.0
11.9

8.1

Prediction!

MWPM + class prediction

GNN provides edge-weights to a matching decoder

• Challenge: Loss is non-
differentiable as matching gives
discrete output

Approaching MWPM with error informed edge-weights

Conclusions
• Data-driven model-free approach to decoding using graph neural network

• Competitive to matching decoders for accuracy and speed

• Approaches maximum-likelihood decoder, soft-output decoder

• Challenging to scale to larger code-distances, more data/larger networks?

• Outlook: Generate training data (using IBM hardware)

• Outlook: Decode sliding window in time to scale (Google is doing this)

• Outlook: Move from GPU to FPGA for fast inference

• Outlook: Hybrid ”neural matching decoder”

Collaborators: Basudha Srivastava (GU and Quantinuum), Moritz Lange,
Isak Bengtsson, Blaž Pridgar, Frida Fjelddahl, Pontus Havström,
Valdemar Bergentall, Karl Hammar, Olivia Heuts, David Fitzek (Volvo), Ben
Criger (Quantinuum), Anton Frisk Kockum (Chalmers), Evert van
Nieuwenburg (Leiden)

