

Graph neural network based decoders for quantum error correcting codes

> Mats Granath Department of Physics University of Gothenburg

2nd Workshop of Machine Learning for Quantum Technology Max Planck Institute for the Science of Light Erlangen Nov 6, 2024

Quantum computing limited by decoherence

Superconducting qubits:

- lifetime 100 microsecond
- two qubit gate times few 100 nanoseconds
 Maximum few 100 gates deep circuits (error rates ~ 10⁻³)

To factor N= 2^{2048} size integer using Shor's algorithm takes > $(logN)^2 = 10^7$ deep circuit. (error rates < 10^{-7})

Longer qubit lifetimes needed to get ``quantum advantage''?

Assuming all gates

readily available!

Quantum error correction

Peter W. Shor, "Scheme for reducing decoherence in quantum computer memory," Physical Review A **52**, R2493–R2496 (1995).

A. M. Steane, "Error Correcting Codes in Quantum Theory," Physical Review Letters **77**, 793–797 (1996). Daniel Gottesman, "Stabilizer Codes and Quantum Error Correction," (1997), arXiv:quant-ph/9705052.

Distribute information over many physical qubits --> Lower error rate logical qubit

Article Realizing repeated quantum error correction in a distance-three surface code

9 qubit "surface code"

|0>

Scalable error suppression

Quantum error correction below the surface code threshold

Google Quantum AI and Collaborators (Dated: August 27, 2024)

49 qubit surface code

Best results rely on machine learning for decoding! Bausch et al. 2023

Outline

- The surface code and the decoding problem
- Matching Decoders
- Why machine learning decoders?
- Graph neural networks
- Results and work in progress

Surface code recap

Planar version of Kitaev's toric code

- $n=d^2$ (data) qubits
- d^2 -1, 4 and 2 qubit stabilizer (generators)
- Commuting and independent
- *k*=1 logical qubit
- Code-distance d

- Hilbert space partitioned by the ±1 eigenvalues of the stabilizers into d²-1, 2dimensional sectors
- Any of these can serve as the logical qubit

S. B. Bravyi and A. Y. Kitaev, Quantum codes on a lattice with boundary (1998), arXiv:quant-ph/9811052.
E. Dennis, A. Kitaev, A. Landahl, and J. Preskill, Topological quantum memory, Journal of Mathematical Physics 43, 4452 (2002).

A. Kitaev, Fault-tolerant quantum computation by anyons, Annals of Physics **303**, 2 (2003).

 $Z_{L}|0\rangle_{L} = |0\rangle_{L}$ $|1\rangle_{L} = X_{L}|0\rangle_{L}$ $\rho = \sum_{i,j \in \{0,1\}} \rho_{ij}|i\rangle_{L}\langle j|_{L}$

Logical Pauli operators:

commute with stabilizers

outside stabilizer group

minimal undetectable error=code-distance

Decoding basics

Decoder: Syndrome => Correction

Challenge: 2^{d^2+1} errors (Pauli strings) consistent with any 1 syndrome!

Equivalence classes of errors

X,

- Errors within a class are equivalent, since the logical qubit is an eigenstate of any stablizer
- Optimal decoder: suggest a correction from the most likely class

Estimating class probabilities

Probability of an error chain C, with n_c errors: $\pi_C = (p/3)^n (1-p)^{N-n} = (1-p)^N (\frac{p/3}{1-p})^n = (1-p)^N e^{-n/T} \qquad 1/T = -\ln(\frac{p/3}{1-p})^n$

Probability of an equivalence class *E*:

 $P_E \sim Z_E = \sum_{C \in E} e^{-n_C/T}$

Optimal, Maximum-likelihood decoder: calculate the partition functions

Asymptotic logical failure rate

Assume error rate $p \ll 1$

Most likely error

Most likely error in other class

When this error occurs => logical (bit-flip) failure

Asymptotic logical failure: $P_f \sim p^{(d+1)/2}$

Logical errors are exponentially supressed with code distance d

Decode⁻⁻⁻, MLD versus MLE

MLD: Maximum-likelihood decoder.

Metropolis - Monte Carlo

PRL 109, 160503 (2012)

week ending 19 OCTOBER 2012

High Threshold Error Correction for the Surface Code

PHYSICAL REVIEW LETTERS

James R. Wootton and Daniel Loss Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel, Switzerland (Received 1 March 2012; published 18 October 2012)

PHYSICAL REVIEW A 105, 042616 (2022)

Error-rate-agnostic decoding of topological stabilizer codes

Karl Hammar[®],¹ Alexei Orekhov[®],² Patrik Wallin Hybelius[®],¹ Anna Katariina Wisakanto,¹ Basudha Srivastava[®],¹ Anton Frisk Kockum[®],² and Mats Granath[®],^{1,*} ¹Department of Physics, University of Gothenburg, 41296 Gothenburg, Sweden
²Department of Microtechnology and Nanoscience, Chalmers University of Technology, 1296 Gothenburg, Sweden

Tensor network based

PHYSICAL REVIEW A **90**, 032326 (2014) **Efficient algorithms for maximum likelihood decoding in the surface code**

> Sergey Bravyi, Martin Suchara, and Alexander Vargo IBM Watson Research Center, Yorktown Heights, New York 10598, USA (Received 23 June 2014; published 25 September 2014)

Accurate but slow.

MLE: Most likely error decoder

Matching decoders (next slide)

D. S. Wang, A. G. Fowler, A. M. Stephens, and L. C. L. Hollenberg, Threshold error rates for the toric and planar codes, Quantum Inf. Comput. **10**, 456 (2010).

D. S. Wang, A. G. Fowler, and L. C. L. Hollenberg, Surface code quantum computing with error rates over 1%, Phys. Rev. A **83**, 020302(R) (2011).

Suboptimal, but fast

Matching decoders (Dijkstra + Blossom)

PyMatching: A Python package for decoding quantum codes with minimum-weight perfect matching

Oscar Higgott^{*1}

Belief-matching

Accounts for correlations between X and Z stablizers, due to Y errors

PHYSICAL REVIEW X 13, 031007 (2023)

Improved Decoding of Circuit Noise and Fragile Boundaries of Tailored Surface Codes

Oscar Higgott⁽⁰⁾,^{1,2,*} Thomas C. Bohdanowicz,^{3,4} Aleksander Kubica,^{4,5} Steven T. Flammia,^{4,5} and Earl T. Campbell^{2,6,7}

Improved accuracy Slower

Stabilizer measurement circuits

To measure stabilizers we use ancilla (measure) qubits

XXXX stabilizer

Simulating experiments with circuit-level noise

We use Stim to generate simulated "experiments"

Stim: a fast stabilizer circuit simulator

Craig Gidney

oogle Inc., Santa Barbara, California 93117, USA				
Published:	2021-07-06, volume 5 , page 497			
Eprint:	arXiv:2103.02202v3			
Doi:	https://doi.org/10.22331/q-2021-07-06-497			
Citation:	Quantum 5, 497 (2021).			

Logical failure rates for matching

At overall error rate $p=1.0 \times 10^{-3}$

Very high accuracies!

Requires detailed knowledge of error channel

Q. Can we use a data driven machine learning approach to decoding?

Motivated by e.g. natural language processing where large deep learning models made strutured (gramatical) approaches obsolete.

- Model free! (non-Pauli error channel)
- Potentially fast and scalable

Extreme requirements on:

- Accuracy 0.999999 (or even higher)
- Inference time µs

Previous work on deep learning based decoders

TABLE I. A comprehensive literature survey and the comparison of the machine learning based syndrome decoders.

Paper	Error correction	dmax	Threshold	ML Technique	Noise model
	code	-mux			
A scalable and fast artificial neural	Surface code with	1025	0.138	Supervised learning con-	Depolarizing, Inho-
network syndrome decoder for surface	boundaries, braid-			volution neural network	mogeneous and Bi-
codes [This Work]	ing and lattice				ased noise models
	surgery structures				
Scalable Neural Decoder for Topologi-	Toric code	255	0.162(5)	Supervised learning dense	Depolarizing noise
cal Surface Codes [22]				neural network	1 0
Reinforcement learning for optimal er-	Toric code	9	0.103	Reinforcement learning,	Bit-flip
ror correction of toric codes [45]				Deep convolutional net	
Neural Network Decoders for Large-	Toric code	64	0.095	Supervised learning,	Bit flip
Distance 2D Toric Codes [35]				Renormalization group	
				based neural network	
Neural ensemble decoding for topologi-	Surface code	11	Not	Supervised learning,	Depolarizing noise
cal quantum error-correcting codes [46]			reported	Neural network ensemble	
				learning	
Deep Q-learning decoder for depolariz-	Toric code	9	0.165	Deep reinforcement	Depolarizing noise
ing noise on the toric code [47]				learning	
Comparing neural network based de-	Rotated surface	9	0.146	Supervised learning, Feed	Depolarizing and
coders for the surface code [48]	code		(depol.),	forward neural networks,	circuit noise
			0.0032(circ.)	Recurrent neural nets	
				with LSTMs	
Symmetries for a High Level Neural De-	Toric code	7	Not	Supervised learning, Feed	Depolarizing noise
coder on the Toric Code [49]			reported	forward neural net	
Quantum error correction for the toric	Toric code	7	Not	Deep reinforcement	Bit-flip
code using deep reinforcement learning			reported	learning	
[50]					
Decoding surface code with a dis-	Rotated surface	9	Not	Supervised learning, Neu-	Depolarizing noise
tributed neural network based decoder	code		reported	ral network	
[51]					
Reinforcement Learning Decoders for	Rotated surface	5	Not	Reinforcement learning,	Bit-flip, Depolar-
Fault-Tolerant Quantum Computation	code		reported	Convolutional neural	izing, Phenomeno-
[52]				network	logical noise
Deep neural decoders for near term	Rotated surface	5	Not	Supervised learning, Deep	Circuit noise
fault-tolerant experiments [24]	code		reported	neural networks, Single	
				layer neural networks	
Scalable Neural Network Decoders for	3D toric code, 4D	12	0.175 (3D),	Supervised learning, Con-	Bit-flip, Phe-
Higher Dimensional Quantum Codes	toric code		0.071 (4D)	volutional neural network	nomenological
[53]					noise
Machine-learning-assisted correction of	Rotated surface	3	Not	Supervised learning, Re-	Depolarizing noise
correlated qubit errors in a topological	code		reported	current neural net with	and Measurement
code [21]				LSTMs	errors
Decoding small surface codes with feed-	Rotated surface	7	Not	Supervised learning, Feed	Bit-flip, Depolar-
forward neural networks [17]	code		reported	forward neural network	izing, Phenomeno-
					logical and Circuit
					noise
Deep Neural Network Probabilistic De-	Toric code	9	0.164	Neural net with 15-18 hid-	Depolarizing noise
coder for Stabilizer Codes [20]				den layers	
Neural Decoder for Topological Codes	Toric code	6	0.109	Restricted Boltzmann	Phase-flip errors
1110	1	1	1	machine	1

Neural Decoder for Topological Codes

Giacomo Torlai and Roger G. Melko Phys. Rev. Lett. **119**, 030501 – Published 18 July 2017

A scalable and fast artificial neural network syndrome decoder for surface codes

Spiro Gicev,^{1, *} Lloyd C.L. Hollenberg,^{1, †} and Muhammad Usman^{1, 2, ‡}

 ¹Center for Quantum Computation and Communication Technology, School of Physics, University of Melbourne, Parkville, 3010, VIC, Australia.
 ²School of Computing and Information Systems, Melbourne School of Engineering, University of Melbourne, Parkville, 3010, VIC, Australia

Mostly conceptual, with simplified error models

Our early attempt: Deep Reinforcement Learning

Quantum error correction for the toric code using deep reinforcement learning

Philip Andreasson, Joel Johansson, Simon Liljestrand, and Mats Granath

Accepted in { }uantum 2019-08-24, click title to verify

Reinforcement learning decoders for fault-tolerant quantum computation

Ryan Sweke¹ [[][®]], Markus S Kesselring¹, Evert P L van Nieuwenburg² [[][®]] and Jens Eisert^{1,3} Published 28 December 2020 · © 2020 The Author(s). Published by IOP Publishing Ltd <u>Machine Learning: Science and Technology, Volume 2, Number 2</u> Step-by-step correction

PHYSICAL REVIEW RESEARCH 2, 023230 (2020)

Deep Q-learning decoder for depolarizing noise on the toric code

David Fitzek © ^{1,2,4} Mattias Eliasson.³ Anton Frisk Kockum © ¹ and Mats Granath ®^{3,1} ¹Wallenberg Centre for yountum Technology, Department of Microtechnology and Nanoscience, Chalmers University of Technology, SE-41296 Gothenburg, Sweden ²Yolvo Group Tracks Technology, 405 08 Gothenburg, Sweden ³Department of Physics, University of Gothenburg, Se-1296 Gothenburg, Sweden

- Inefficient
- Difficult to scale
- Misses the point

Recent work: Graph neural network decoder

Tailored to experimental input

Fast inference? => in time error correction High Accuracy => high logical fidelity

Data-driven decoding of quantum error correcting codes using graph neural networks

Moritz Lange,¹ Pontus Havström,¹ Basudha Srivastava,¹ Valdemar Bergentall,¹ + Isak Bengtsson Karl Hammar,¹ Olivia Heuts,¹ Evert van Nieuwenburg,^{2,*} and Mats Granath^{1,†}

¹Department of Physics, University of Gothenburg, SE-41296 Gothenburg, Sweden ²Leiden Inst. of Advanced Computer Science, Leiden University, Leiden, Netherlands

arXiv:2307.01241

Memory-Z experiment

- 1. Simple product state prepared
- Stabilizers are measured over several rounds => changes=detector events Perfect Z-stabilizers in first and final rounds
- 3. Final individual qubit measurement
- 4. Measured logical coset of error (given by parity change on designated edge) compared to decoder prediction
 Gives logical fidelity of the quantum memory

GNN decoder data

- Detector events = graph nodes
 - space-time location and type as node feature vector
- Edges ~ inverse euclidean (or manhattan) distance
- Label: binary class, logical bit-flip or not (or logical phase-flip or not)

Pruning of edges based on edge weights

Graph neural networks (GNN)

Neural networks suited for graph structured data

Article

Examples

Antibiotic discovery graph regression

Authors

In Brief

Jonathan M. Stokes, Kevin Yang, Kyle Swanson, ..., Tommi S. Jaakkola,

Regina Barzilay, James J. Collins

A trained deep neural network predicts

antibiotic activity in molecules that are structurally different from known antibiotics, among which Halicin exhibits

efficacy against broad-spectrum bacterial infections in mice.

Correspondence

jimjc@mit.edu (J.J.C.)

regina@csail.mit.edu (R.B.),

Cell

A Deep Learning Approach to Antibiotic Discovery

Graphical Abstract

Highlights

- A deep learning model is trained to predict antibiotics based on structure
- Halicin is predicted as an antibacterial molecule from the Drug Repurposing Hub
- Halicin shows broad-spectrum antibiotic activities in mice
- More antibiotics with distinct structures are predicted from the ZINC15 database

Cora dataset, citation network Node classification

McCallum et al. 2000

Data object: Decorated graph

Node feature vectors

Graph convolutional layers

٠

•

٠

•

.

Grid: Standard convolutional filter of fixed size neighborhood

Simple graph convolution:

$$\mathbf{x}'_i = \sigma(W_1 \mathbf{x}_i + W_2 \sum_j e_{ij} \mathbf{x}_j)$$

 W_1 and W_2 : n'x n trainable weight matrices

Semi-supervised classification with graph convolutional networks Kipf and Wellling, 2016 Graph: Convolutional filter adapted to varying neighborhood

A comprehensive survey on graph neural networks Wu et al. 2019 $\mathbf{X'}_i$ ٠ \boldsymbol{X}_i ٠ ٠ ٠ • ٠ ٠ • ٠ ٠ ٠ . ٠ ٠ . ٠

Graph pooling

For graph classification output should be independent of number of nodes

$$\mathbf{x}' = \frac{1}{\# nodes} \sum_i \mathbf{x}_i$$

GNN decoder network architecture

5

PyG (*PyTorch Geometric*) is a library built upon **O PyTorch** to easily write and train Graph Neural Networks (GNNs) for a wide range of applications related to structured data.

GNN on circuit-level noise

Lacking sufficient experimental data we use simulated "experiments"

Training

- One network for each code distance d and number of cycles d_t
- Range of training error rates p=1.0-5.0 x 10⁻³
- Data generated in large batches of 10,000-25,000 graphs (as much as can fit on the GPU memory)
- No reuse of data (no risk to overfit)
- Up to one week training on one Nvidia A100
- Up to 10¹⁰ datapoints

Test

Benchmarked against matching (MWPM) and belief-matching at p=1.0 x 10⁻³

- GNN probably close to optimal (maximum-likelihood) decoder for small d
- Matching decoders know the error model, the GNN decoder does not
- Scaling to larger d is challenging, work in progress using larger networks

GNN as a maximum-likelihood decoder

work in progress

Test optimality

preliminary results

- 1. Bin GNN data according to predicted class probability
- 2. Compare to actual failure rates

Predicted Logical Class Probabilities VS Average Logical Failure Rate at Different Distances

GNN estimates class probabilities accurately. Indication that it's close to optimal.

Most likely failures

Failure count versus decoder confidence

Interestingly, syndromes with high and low decoder confidence all contribute significantly to logical errors

Potential use-case: GNN as soft-output decoder for concatenated codes

Of interest to output not only most likely class, but also the probability of failure

Yoked surface codes

Craig Gidney¹, Michael Newman¹, Peter Brooks², and Cody Jones¹

Hierarchical memories: Simulating quantum LDPC codes with local gates

Christopher A. Pattison¹, Anirudh Krishna^{2,3}, and John Preskill^{1,4}

- Surface code concatenated with other low-density parity check (LDPC) code
- Outer code decoder (with matching or belief propagation) can use conditional inner code error propabilities

Decoding low-density parity check (LDPC) code

work in progress

High-threshold and low-overhead fault-tolerant quantum memory

778 | Nature | Vol 627 | 28 March 2024

- Encodes 12 logical qubits in 144 physical qubits
- Non-local stabilizers in 2D
- Non-matchable (hyperedges)

GNN decoder for LDPC codes

preliminary results

- Multiple logical qubits => multiple output layer nodes
- All graph nodes (stabilizers) are proximate due to long-range connectivity

Still a little way to go!

Inference time per syndrome

- Fixed size network
- Hardware and implementation dependent

- Decoding time scales linearly with code "volume"
- NB Both MWPM (Pymatching) and GNN are batched/parallelized

GNN on real experimental data

Repetition code, 25 stabilizer cycles Datsets of around 10⁷

GNN decoder on par with "informed" matching decoder for d=3 and 5.

Surface code dataset is too small, and/or error rates too high.

Other recent related work

Neural network decoder for near-term surface-code experiments

Boris M. Varbanov,^{1, *} Marc Serra-Peralta,^{1, 2} David Byfield,³ and Barbara M. Terhal^{1, 2} ¹QuTech, Delft University of Technology, P.O. Box 5046, 2600 GA Delft, The Netherlands [']Delft Institute of Applied Mathematics, Technische Universiteit Delft, 2628 CD Delft, The Netherlands ³Riverlane, Cambridge, CB2 3BZ, United Kingdom (Dated: October 24, 2023)

Learning to Decode the Surface Code with a Recurrent, Transformer-Based Neural Network

Johannes Bausch^{1*†}, Andrew W Senior^{1*†}, Francisco J H Heras^{1†}, Thomas Edlich^{1†}, Alex Davies^{1†}, Michael Newman^{2†}, Cody Jones², Kevin Satzinger², Murphy Yuezhen Niu², Sam Blackwell¹, George Holland¹, Dvir Kafri², Juan Atalaya², Craig Gidney², Demis Hassabis¹, Sergio Boixo², Hartmut Neven², Pushmeet Kohli¹

¹Google DeepMind & ²Google Quantum AI

9 Oct 2023

Work in progress: "Neural belief-matching"

- A pure neural network decoder is very data-hungry
- Can we combine a smaller graph network with a matching decoder? Still data-driven/model-free

GNN provides edge-weights to a matching decoder

 Challenge: Loss is nondifferentiable as matching gives discrete output

Approaching MWPM with error informed edge-weights

Conclusions

- Data-driven model-free approach to decoding using graph neural network
- Competitive to matching decoders for accuracy and speed
- Approaches maximum-likelihood decoder, soft-output decoder
- Challenging to scale to larger code-distances, more data/larger networks?
- Outlook: Generate training data (using IBM hardware)
- Outlook: Decode sliding window in time to scale (Google is doing this)
- Outlook: Move from GPU to FPGA for fast inference
- Outlook: Hybrid "neural matching decoder"

Collaborators: **Basudha Srivastava** (GU and Quantinuum), **Moritz Lange**, **Isak Bengtsson**, **Blaž Pridgar**, Frida Fjelddahl, Pontus Havström, Valdemar Bergentall, Karl Hammar, Olivia Heuts, David Fitzek (Volvo), Ben Criger (Quantinuum), Anton Frisk Kockum (Chalmers), Evert van Nieuwenburg (Leiden)

