Quantum convolutional neural networks for the recognition of many-body topological phases of matter

University of Erlangen-Nuremberg

Petr Zapletal

Universität Basel

Funded by the European Union

Quantum machine learning

Cerezo et al., Nat Rev Phys **3**, 625 (2021)

Parametrized quantum circuits

Cost function - task specification

Measurement and classical optimization

Quantum machine learning

Cerezo et al., Nat Rev Phys 3, 625 (2021)

Parametrized quantum circuits

Cost function - task specification

Measurement and classical optimization

Cost function:

 $C = \langle H(\vec{\alpha}) \rangle$

$\vec{\theta} \to \vec{\theta} - n \nabla C$

Quantum data:

- States $|\psi\rangle$ produced by quantum algorithms
- Native (no encoding)
- Characterization tools for scalable quantum computers
- Robust against errors on near-term quantum devices

Characterization of quantum states

Sample complexity: number of state copies to determine an observable/characteristic

Quantum state tomography

• Sample complexity $\sim e^N$

Classical shadows: randomized measurements

- Efficient for k-local observables
- Sample complexity $\sim e^k$

Data acquisition phase

Huang et al., Nat Phys 16, 1050 (2020)

Quantum state tomography

• Sample complexity $\sim e^N$

Classical shadows: randomized measurements

- Efficient for k-local observables
- Sample complexity $\sim e^k$

Huang et al., Nat Phys 16, 1050 (2020)

Quantum phases of matter

Topological ordered: at zero temperature

- Non-local quantum correlations
- Invariant under local transformations

Spin liquids Kivelson et al. Nat Rev Phys **5** 368 (2023)

Toric code: Kitaev, Ann Phys 303 2 (2003) Symmetry-protected top. order: Chen et al., PRB 83 035107 (2011) Hard to simulate: Exponential growth of Hilbert space

Quantum phases of matter

Topological ordered: at zero temperature

- Non-local quantum correlations
- Invariant under local transformations

Spin liquids Kivelson et al. Nat Rev Phys 5 368 (2023)

Toric code: Kitaev, Ann Phys **303** 2 (2003) Symmetry-protected top. order: Chen et al., PRB 83 035107 (2011) Hard to simulate: Exponential growth of Hilbert space

Quantum phases of matter

Topological ordered: at zero temperature

- Non-local quantum correlations
- Invariant under local transformations

Spin liquids Kivelson et al. Nat Rev Phys 5 368 (2023)

Toric code: Kitaev, Ann Phys **303** 2 (2003) Symmetry-protected top. order: Chen et al., PRB 83 035107 (2011) Hard to simulate: Exponential growth of Hilbert space

- Quantum state $|\psi\rangle \longrightarrow$ quantum phase?
- No local order parameter
- Hard to measure fidelity, entanglement

Quantum convolutional neural network

Convolutional neural networks

Parametrized quantum circuit Analogous to convolutional neural networks Qubits→neuron, **Measurements**→nonlinearity Recognizing phase of state $|\psi\rangle$

Cong et al.,

Variational optimization e.g. supervised learning Liu et al., PRL 130, 220603 (2023)

See my poster in SESSION A

Convolution Pooling Fully connected

Explicit construction Cong et al. Renormalization group Sachdev, Quantum phase Transitions (2011) Quantum error correction See my poster in SESSION A

ا ج 1.51

0

0.1

strength

tion

Intera

Explicit construction Cong et al. **Renormalization group** Sachdev, Quantum phase **Transitions** (2011) **Quantum error correction**

1D cluster-Ising model $H = -\sum_{j=1}^{N} Z_{j-1} X_{j} Z_{j+1}$

$$-h_1 \sum_{j} X_j - h_2 \sum_{j} X_j X_{j+1}$$

j
Symmetries $P_{e/o} = \prod X_{2j/2j+1}$

paramagnetic

$$-1.5$$

See my poster in **SESSION A**

0

strength

tion

Intera

Explicit construction Cong et al. **Renormalization group** Sachdev, Quantum phase **Transitions** (2011) **Quantum error correction**

See my poster in **SESSION A**

1D cluster-Ising model $H = -\sum_{j=1}^{N} Z_{j-1} X_j Z_{j+1}$ Characte ristic $-h_1 \sum X_j - h_2 \sum X_j X_{j+1}$ Pertur bation Symmetries $P_{e/o} = \prod X_{2j/2j+1}$

paramagnetic

0

0.1

strength

Intera

Explicit construction Cong et al. **Renormalization group** Sachdev, Quantum phase **Transitions** (2011) **Quantum error correction**

See my poster in **SESSION A**

PZ, Nathan McMahon, Michael Hartmann

Integrate quantum error correction

Tolerance to noise on NISQ computers

See my poster in SESSION A

PRResearch 6, 033111 (2024)

20241

Error-tolerant QCNNs

Integrate quantum error correction

Tolerance to noise on NISQ computers

PRResearch 6, 033111 (2024)

Realizing QCNNs on a superconducting quantum[®] processor to recognize quantum phases

Johannes Herrmann^{1⊠}, Sergi Masot Llima¹, Ants Remm¹, Petr Zapletal [[]D², Nathan A. McMahon², Colin Scarato (1), François Swiadek¹, Christian Kraglund Andersen (1), Christoph Hellings (1), Sebastian Krinner¹, Nathan Lacroix (1)¹, Stefania Lazar¹, Michael Kerschbaum¹, Dante Colao Zanuz¹, Graham J. Norris¹, Michael J. Hartmann (², Andreas Wallraff ^{1,3} & Christopher Eichler ¹

Variational quantum eigensolver

- Nat Commun 13 4144 (2022)

Related projects in Poster SESSION B

QCNN for Phase Recognition in 2D

Leon C. Sander

Pooling

Conclusions

Quantum convolutional neural networks Integrated quantum error correction **Exponential reduction of sample complexity** Realized on 7-qubit superconducting processor Intrinsic topological order in 2D Autonomous recognition of quantum phases

petr.zapletal@unibas.ch

Topo?

Conclusions

Quantum convolutional neural networks Integrated quantum error correction **Exponential reduction of sample complexity** Realized on 7-qubit superconducting processor Intrinsic topological order in 2D Autonomous recognition of quantum phases

Outlook: Training of QCNNs on superconducting quantum processors Less-understood models: quantum spin liquids, anyonic chains

